The experiments conducted in this study examined the hypergolicity and ignition delay of the formulated ethanol gelled fuel and hydrogen peroxide oxidizer bipropellant system. The hypergolicity and ignition delay data for bipropellant system are very important for propulsion applications. It was observed that the ethanol based gelled fuel systems were hypergolic with hydrogen peroxide (90% pure) in a presence of a suitable catalyst. The observed ignition delay was within the range of 10~50 ms, which was comparable with the existing liquid hypergolic bipropellant systems. Temperature profile also indicated that the hypergolic system attained a very high temperature profile range of 1000 8C to 1400 8C for a very small weight percent of fuel. Experiments conducted with two separate volumes of oxidizer, 14 ml and 50 ml. In both cases the propellant system was fuel rich. It was also observed that the formation of cage in the gel network, which could encapsulate the higher temperature gases and flame in a network, might be a plausible reason for recorded higher ignition delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.