5G envisages a "hyper-connected society" where an enormous number of devices are interconnected anywhere and at any time. Cloud-enabled radio access networks (RAN) where intelligence is placed in conjunction with the radio heads at the proximity of end users is a promising solution to fulfil the 5G expectations of sub-millisecond latency, huge traffic volumes and higher data rates. Network Functions Virtualization (NFV) and Software Defined Networking (SDN) developments enable end users to access advanced features such as configurability, automation, scalability, improved resource utilization and multi tenancy over the cloud-enabled RANs. Management and orchestration techniques are the ultimate factor that determine the effectiveness of the novel SDN/NFV features being introduced. Our focus in this study is the resource allocation in a realistic cloud-enabled RAN, taking into account the dynamics of ~100,000 persons movement in a crowded event, i.e. a football match. The proposed solution jointly orchestrates NFV and bandwidth resources, as one resource affects the other. Simulation results clearly verify the benefits of the proposed solution over traditional disjoint schemes.
The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of different service providers, and introduces a specialised Development and Operations model for supporting developers.
Mobile networks are facing an unprecedented demand for high-speed connectivity originating from novel mobile applications and services and, in general, from the adoption curve of mobile devices. However, coping with the service requirements imposed by current and future applications and services is very difficult since mobile networks are becoming progressively more heterogeneous and more complex. In this context, a promising approach is the adoption of novel network automation solutions and, in particular, of zero-touch management techniques. In this work, we refer to zero-touch management as a fully autonomous network management solution with human oversight. This survey sits at the crossroad between zero-touch management and mobile and wireless network research, effectively bridging a gap in terms of literature review between the two domains. In this paper, we first provide a taxonomy of network management solutions. We then discuss the relevant state-of-the-art on autonomous mobile networks. The concept of zero-touch management and the associated standardization efforts are then introduced. The survey continues with a review of the most important technological enablers for zero-touch management. The network automation solutions from the RAN to the core network, including end-toend aspects such as security, are then surveyed. Finally, we close this article with the current challenges and research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.