Alzheimer’s disease (AD) is the most common neurodegenerative disorder worldwide. Ongoing research to develop AD treatments has characterized multiple drug targets including the cholinergic system, amyloid-β peptide, phosphorylated tau, and neuroinflammation. These systems have the potential to interact to either drive or slow AD progression. Promising agents that simultaneously impact many of these drug targets are the AD experimental drug Posiphen and its enantiomer phenserine that, currently, are separately being evaluated in clinical trials. To define the cholinergic component of these agents, the anticholinesterase activities of a ligand dataset comprising Posiphen and primary metabolites ((+)-N1-norPosiphen, (+)-N8-norPosiphen, and (+)-N1,N8-bisnorPosiphen) were characterized and compared to those of the enantiomer phenserine. The “target” dataset involved the human cholinesterase enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Binding interactions between the ligands and targets were analyzed using Autodock 4.2. The computationally determined inhibitory action of these ligands was then compared to ex vivo laboratory-measured values versus human AChE and BChE. While Posiphen lacked AChE inhibitory action, its major and minor metabolites (+)-N1-norPosiphen and (+)-N1,N8-bisnorPosiphen, respectively, possessed modest AChE inhibitory activity, and Posiphen and all metabolites lacked BChE action. Phenserine, as a positive control, demonstrated AChE-selective inhibitory action. In light of AChE inhibitory action deriving from a major and minor Posiphen metabolite, current Posiphen clinical trials in AD and related disorders should additionally evaluate AChE inhibition; particularly if Posiphen should be combined with a known anticholinesterase, since this drug class is clinically approved and the standard of care for AD subjects, and excessive AChE inhibition may impact drug tolerability.
MicroRNAs (miRNAs) are small non-coding RNA’s that controls the regulation of a gene. Due to the over expression or under expression of miRNAs it leads to cause tumor or any other type of cancers such as, melanoma, lymphoma, cardiovascular issue, breast cancer etc. So, miRNAs can be used as a drug target for cancer therapy. This study aimed to check binding cavities of microRNA's involved in regulation of CDK6 protein. There are 23 different families of miRNAs that are involved in regulation of CDK6. Each family has one or more miRNAs. All these miRNAs are involved in the up regulation or downregulation of a gene, which lead to different type of cancers. All miRNAs of each family docked with mRNA CDK6 protein. After performing in silico analysis of binding interactions of mRNA with miRNAs the results were further refined by their comparison with information regarding their energies, interaction of the mRNA and miRNAs. The results show that all miRNAs lie in Protein Kinase domain, but the residues that lie is different within the families and across the families.
Alzheimer’s is a progressive mental deterioration associated with the degeneration of the cognition activities and memory loss. It is considered to be a multifactorial disease. One of the causes of the Alzheimer’s disease is the low concentration of the neurotransmitter named acetylcholine (ACh) at the synaptic cleft. Thus, inhibitor of Acetylcholinesterase (AChE), an enzyme whose function is to degrade the acetylcholine, is proved to be a promising candidate to treat this disease. Among the inhibitors are the natural alkaloids that also have an inhibitory effect on the AChE. In this study we have focused on the simple derivates of beta carbolime (a group of alkaloids) and studied their interaction with AChE via rigid protein-ligand docking approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.