<p><em>Chicken eggs have become a basic necessity for Indonesians, both for personal consumption and for business purposes. Eggs that are good or quality can be seen based on the yolk. Both those who are only a day old a week or more than two weeks or those that are not suitable for consumption.</em></p><p><em>Quality egg yolks appear brighter in yellow and there are no stripes or other colors and markings in the yolk. Eggs. From this, the author tries to do research on the detection of quality detection of native chicken egg yolk using Order One Statistical Extraction based on Fuzzy Logic. Feature extraction The first order egg yolk image in this study uses various features, namely variance, skewness, cartulation, entropy and mean. Texture measurements in the first order use statistical calculations based on the original image pixel value for the sole purpose of finding the histogram characteristics of the image.</em></p><p><em>The results of this study are the value of the feature calculation in first order statistics to be used to make the decision whether the egg yolk is suitable for consumption or not. This research is expected to be able to provide insight in determining the quality or absence of native chicken eggs. The first step in this research is to look for data in the form of egg yolks from native chickens, after that we take a picture in the form of an image of egg yolk using the same camera and the same distance as well. So that the image results obtained have the same level of precision. From this image, we then look for the first order statistical value which will be used as a reference in determining the quality of eggs using fuzzy logic.</em></p>
<p><em>Chicken eggs are one of the most familiar side dishes in Indonesia besides tempeh. High protein and low prices make eggs a favorite side dish for the people of Indonesia. Although almost every day we see egg yolks we often can't tell for sure what chicken egg yolks we see. Based on this, the author tries to study egg yolk imagery based on first-order feature extraction using various features such as variance, skewness, carding, entropy, and mean. Statistical calculations are used based on the pixel values of the original image in this first-order texture calculation with the sole purpose of finding the histogram properties of the image. The results of first-order statistical characteristic calculations were used to differentiate between native and purebred chicken eggs. This study facilitates decision making, especially in the selection of accurate and measurable egg yolks from several types of chicken eggs, thereby minimizing public mistakes in choosing eggs based on egg yolks. The first step that can be done is to determine the data consisting of various types of images of free-range chicken egg yolks. These are free-range chicken eggs and purebred chicken eggs. The image is then segmented by separating the yolk and white, then first-order statistical analysis which later the results of these statistical calculations can be used as a reference in determining the type of egg. The results of the trial resulted in first-order feature extraction statistical values, namely for native chickens, the mean value was 132.743, min 69.5255, max 252.5, standard deviation was 29.922 and variance was 905.882. The average value of statistics was order 1 for native chickens. of mean 137,176, min 48, max 240.2, standard deviation 31,454 and variance of 957.89.</em></p>
Penelitian ini membahas tentang segmentasi citra kuning telur ayam kampung dengan filter yang mampu mensimulasikan karakteristik sistem visual manusia dalam mengisolasi frekuensi dan orientasi tertentu dari citra yang bisasa kita sebut filter Gabor. Langkah pertama mengambil data yaitu berupa citra kuning telur ayam kampung. Kedua melakukan pre-processing citra sebelum di segmentasi, tujuanya agar citra tersebut lebih presisi, selanjutnya segmentasi citra dengan metode yang digunakan sehingga dapat dihasilkan pemisahan objek dengan latar belakang dari citra tersebut .Prosses Segmentasi pola tekstur citra kuning telur untuk mengenali jenis ayam kampung menggunakan filter gabor memerlukan empat tahapan, tahapan pertama mengenali citra asli kuning telur, setelah kita dapat mengenali citra kuning telur kemudian kita memfilter citra tersebut dengan nilai λ dan sudut θ dengan nilai tertentu. Pada penelitian ini penulis menggunakan nilai λ=3,5, 4,5, 5,5, dan 6,5. Sudut θ sebesar 0, 45, 90 dan 135. Proses selanjutnya adalah dilakukan operasi thresholding pada citra magnitude dengan nilai threshold yang sudah di tentukan yaitu sebesar 1000. Tahap terakhir atau keempat adalah memvisualisasikan hasil segmentasi terhadap citra asli kuning telur ayam kampung. Hasil penelitian yang di hasilnya menujukan bahwa dengan nilai λ dan θ yang berbeda beda pemisahan objek dengan beckground dapat dikenali sehingga dengan menggunakan filter gabor segmentasi cira kuning telur ayam kampung dapat di lakukan dengan hasil yang baik sehingga dapat digunakan untuk sebuah pengambilan keputusan pengenalan kuning telur ayam kampung.
AbstrakCitra merupakan sebuah gambaran dari sebuah objek yang menarik untuk di teliti. Penelitian ini membahas tentang Analisa citra berbasis fitur warna, tekstur dan histogram. Fitur-fitur ini akan dicari untuk memperoleh nilai yang akan digunakan sebagai acuan untuk mencari kemiripan citra berdasarkan error pada citra. Besar kecil nya error yang di peroleh dari nilai-nilai fitur tersebut menunjukan besar kecilnya kemiripan dari sebuah citra.Fitur warna citra berpengaruh pada kejelasan sebuah objek yang ada pada citra tersebut. Dengan warna yang berbeda-beda objek dapat dideteksi dengan cepat walaupun hanya dengan kasat mata. Analisa citra dengan fitur warna yang dilakukan menggunakan nilai RGB pada citra yang dicari fiturnya, yaitu nilai Red, Green dan Blue pada tiap blok pikselnya. Setelah nilai fitur watna diperoleh, kemudian dicari nilai fitur tekstur menggunakan metode statistika orde dua yaitu Gray Level Cooccurrence Matrix (GLCM). Fitur-fitur tekstur tersebut antara lain: Kontras, IDM ASM, Entropi, dan Korelasi.Tahap akhir dicari nilai histogram dari tiga kondisi citra yang berbeda-beda untuk menunjukkan kondisi terang, normal dan gelap. Nilai-nilai fitur yang di peroleh kemudian digunakan untuk mencari kemiripan citra dengan menentukan besar kecilnya nilai error, dimana pada penelitian ini digunakan MSE (Mean Square errors) dan MAE (Mean Absolute Errors) untuk mencari besar nilai error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.