Current work focusses on the wind potential assessment in South Punjab. Eleven locations from South Punjab have been analyzed using two-parameter Weibull model (with Energy Pattern Factor Method to estimate Weibull parameters) and five years (2014–2018) hourly wind data measured at 50 m height and collected from Pakistan Meteorological Department. Techno-economic analysis of energy production using six different turbine models was carried out with the purpose of presenting a clear picture about the importance of turbine selection at particular location. The analysis showed that Rahim Yar Khan carries the highest wind speed, highest wind power density, and wind energy density with values 4.40 ms−1, 77.2 W/m2 and 677.76 kWh/m2/year, respectively. On the other extreme, Bahawalnagar observes the least wind speed i.e. 3.60 ms−1 while Layyah observes the minimum wind power density and wind energy density as 38.96 W/m2 and 352.24 kWh/m2/year, respectively. According to National Renewable Energy Laboratory standards, wind potential ranging from 0 to 200 W/m2 is considered poor. Economic assessment was carried out to find feasibility of the location for energy harvesting. Finally, Polar diagrams drawn to show the optimum wind blowing directions shows that optimum wind direction in the region is southwest.
Continuous probability distributions have long been used to model the wind data. No single distribution can be declared accurate for all locations. Therefore, a comparison of different distributions before actual wind resource assessment should be carried out. Current work focuses on the application of three probability distributions, i.e. Weibull, Rayleigh, and lognormal for wind resource estimation at six sites along the coastal belt of Pakistan. Four years’ (2015–2018) wind data measured each 60-minutes at 50 m height for six locations were collected from Pakistan Meteorological Department. Comparison of these distributions was done based on coefficient of determination ( R2), root mean square error, and mean absolute percentage deviation. Comparison showed that Weibull distribution is the most accurate followed by lognormal and Rayleigh, respectively. Wind power density ( PD) was evaluated and it was found that Karachi has the highest wind speed and PD as 5.82 m/s and 162.69 W/m2, respectively, while Jiwani has the lowest wind speed and PD as 4.62 m/s and 76.76 W/m2, respectively. Furthermore, feasibility of annual energy production (AEP) was determined using six turbines. It was found that Vestas V42 shows the worst performance while Bonus 1300/62 is the best with respect to annual energy production and Bonus 600/44 is the most economical. Finally, sensitivity analysis was carried out.
Application of Weibull distribution in a generalized way to estimate wind potential cannot always be advisable. The novelty of this work is to estimate wind potential using Normal probability density function. A comparison of five probability distributions namely Normal, Gamma, Chi-Squared, Weibull, and Rayleigh was done using three performance evaluation criteria. Four years (2015–2018) hourly wind data at 50 m height at five stations near the coastline of Pakistan was used. It was found that normal distribution gives the best fit at each of these stations and against each evaluation criterion followed by Weibull distribution while Rayleigh distribution gives the poorest fit. Further energy generation by fifteen turbine models was calculated and GE 45.7 was found the best in terms of amount of energy generation and capacity factors while Vestas V42 shows the worst. However, GE/1.5 SL is the most economical while Vestas V63 is the least. Among five locations, Shahbandar is the best potential site while Manora is the least.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.