The design and performance of an innovative high-precision extensometer system, fabricated inexpensively using 3D printing technology, are discussed in this paper. In the development of the extensometer, an embedded Fiber Bragg Grating (FBG) strain sensor was 3D printed using a thermoplastic polyurethane (TPU) filament, which was used as the primary sensing element of the extensometer system, taking advantage of its excellent flexibility and high sensitivity to variations in localized strain. In the performance assessment carried out, the results obtained during the experimental test and validation have demonstrated that it could be used very effectively to measure strain variations, with an average wavelength responsivity of 0.0158 nm/cm (for displacement) and very high linearity (up to 99%). Furthermore, the protection integrated into the sensor systems design makes it well-suited for in-thefield applications, such as monitoring ground displacements which can lead to dangerous slippages of sloped earthworks. In addition, a field testing of the extensometer under simulated conditions has shown that a Fiber Bragg Grating (FBG)based approach could be applied effectively to the measurement of strain, offering a wavelength responsivity of 0.0012 nm/με (for strain-sensitive FBGs) under both dry and wet soil conditions. Moreover, taking advantage of the high (~99%) linearity, the extensometer is a reliable instrument for use in different underground conditions, creating an easy-to-use ground movement monitoring system which then enables an excellent representation of the displacement profile of the earth to be made.
Fiber Bragg Grating (FBG)-based inclinometer has been developed for field use, designed to incorporate biaxial 3-dimensional (3D) printed tilt sensors (in which four FBGs were used). The inclinometer was characterized by examining its response to a wide range of tilts, over the range from 0° to 90°, towards the inclination axes. An excellent linear correlation between the wavelength shifts and the inclination angle (up to the 90° used) was obtained, showing an average sensitivity of 0.01 nm per degree of inclination angle, for each of the FBGs used. In addition to the four FBGs that form the basis of the inclination measurement, a further FBG was included in the design to allow compensation for any temperature changes experienced during the measurements. The device was calibrated over the range from -25°C to 80°C (corresponding to the extremes of cold and hot weather conditions likely to be experienced in-the-field), and a sensitivity to temperature change of 0.011nm/°C was achieved, allowing an effective temperature correction to be applied. The data obtained from a full characterization of the performance of the sensor system, carried out in a stable, controlled environment, indicate that this inclinometer yields good sensitivity, making it highly applicable for use in monitoring rapid ground movements and deformations with its compact design allowing its wide use.
A surface-mounted tilt sensor was designed and fabricated to measure the inclination angle of engineered structures or slopes in two directions. The device utilizes two strain-sensitive fiber Bragg gratings (FBGs) for tilt angle measurement bidirectionally and one strain-free FBG to provide temperature compensation. In this work, a tilt sensor prototype was fabricated using a 3-D printer, with a robust enclosure and a miniature actuator with dimensions of 115 × 65 × 30 mm and 45 × 20 × 3 mm, respectively. The device was first calibrated in the laboratory for tilt and temperature parameters. For tilt calibration, the device yields a sensitivity value of 0.0135 and 0.0123 nm/ • for +x-and -x-directions. On the other hand, the device delivers a sensitivity value of 0.0105 nm/ • C as the response to temperature changes. The tilt sensor was also tested for suitability in a real-field deployment where it was installed on a retaining wall and was left for four weeks. The field test data indicate no vertical displacement of the wall since the device exhibits zero inclination changes during the test period. This compact, robust, and easy-to-install tilt sensor has excellent potential for various geotechnical applications, mainly in landslide detections, ground movement, and engineered slope monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.