Data centers can go green by saving electricity in two major areas: computing and cooling. Servers in data centers require a constant supply of cold air from on-site cooling mechanisms for reliability. An increased computational load makes servers dissipate more power as heat and eventually amplifies the cooling load. In thermal-aware scheduling, computations are scheduled with the objective of reducing the data-center-wide thermal gradient, hotspots, and cooling magnitude. Complemented by heat modeling and thermal-aware monitoring and profiling, this scheduling is energy efficient and economical. A survey is presented henceforth of thermal-ware scheduling and associated techniques for green data centers.
A rise in inlet air temperature may lower the rate of heat dissipation from air cooled computing servers. This introduces a thermal stress to these servers. As a result, the poorly cooled active servers will start conducting heat to the neighboring servers and giving rise to hotspot regions of thermal stress, inside the data center. As a result, the physical hardware of these servers may fail, thus causing performance loss, monetary loss, and higher energy consumption for cooling mechanism. In order to minimize these situations, this paper performs the profiling of inlet temperature sensitivity (ITS) and defines the optimum location for each server to minimize the chances of creating a thermal hotspot and thermal stress. Based upon novel ITS analysis, a thermal state monitoring and server relocation algorithm for data centers is being proposed. The contribution of this paper is bringing the peak outlet temperatures of the relocated servers closer to average outlet temperature by over 5 times, lowering the average peak outlet temperature by 3.5% and minimizing the thermal stress.
Climate change and the COVID-19 pandemic have disrupted the food supply chain across the globe and adversely affected food security. Early estimation of staple crops can assist relevant government agencies to take timely actions for ensuring food security. Reliable crop type maps can play an essential role in monitoring crops, estimating yields, and maintaining smooth food supplies. However, these maps are not available for developing countries until crops have matured and are about to be harvested. The use of remote sensing for accurate crop-type mapping in the first few weeks of sowing remains challenging. Smallholder farming systems and diverse crop types further complicate the challenge. For this study, a ground-based survey is carried out to map fields by recording the coordinates and planted crops in respective fields. The time-series images of the mapped fields are acquired from the Sentinel-2 satellite. A deep learning-based long short-term memory network is used for the accurate mapping of crops at an early growth stage. Results show that staple crops, including rice, wheat, and sugarcane, are classified with 93.77% accuracy as early as the first four weeks of sowing. The proposed method can be applied on a large scale to effectively map crop types for smallholder farms at an early stage, allowing the authorities to plan a seamless availability of food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.