Design of a vision-based traffic analytic system for urban traffic video scenes has a great potential in context of Intelligent Transportation System (ITS). It offers useful traffic-related insights at much lower costs compared to their conventional sensor based counterparts. However, it remains a challenging problem till today due to the complexity factors such as camera hardware constraints, camera movement, object occlusion, object speed, object resolution, traffic flow density, and lighting conditions etc. ITS has many applications including and not just limited to Queue estimation, Speed detection and different anomalies detection etc. All of these applications are primarily dependent on sensing vehicle presence to form some basis for analysis. Moving Cast shadows of vehicles is one of the major problems that affects the vehicle detection as it can cause detection and tracking inaccuracies. Therefore, it is exceedingly important to distinguish dynamic objects from their moving cast shadows for accurate vehicle detection and recognition. This paper provides an in-depth comparative analysis of different traffic paradigm-focused conventional and state-of-the-art shadow detection and removal algorithms. Till date, there has been only one brief survey which highlights the shadow removal methodologies particularly for traffic paradigm. In this paper, a number of research papers containing results of urban traffic scenes have been shortlisted from the last three decades to give a comprehensive overview of the work done in this area. The study reveals that the only way to make a comparative evaluation is to use the existing Highway I, II, and III datasets which are frequently used for qualitative or quantitative analysis of shadow detection or removal algorithms. Furthermore, the paper not only provides cues to solve moving cast shadow problems, but also suggests that even after the advent of Convolutional Neural Network (CNN)-based vehicle detection methods, the problems caused by moving cast shadows persists. Therefore, this paper proposes a hybrid approach which uses a combination of conventional and state-of-the-art techniques as a pre-processing step for shadow detection and removal before using CNN for vehicles detection. The results indicate a significant improvement in vehicle detection accuracies after using the proposed approach.
In the traffic engineering realm, queue length estimation is considered one of the most critical challenges in the Intelligent Transportation System (ITS). Queue lengths are important for determining traffic capacity and quality, such that the risk for blockage in any traffic lane could be minimized. The Vision-based sensors show huge potentials compared to fixed or moving sensors as they offer flexibility for data acquisition due to large-scale deployment at a huge pace. Compared to others, these sensors offer low installation/maintenance costs and also help with other traffic surveillance related tasks. In this research, a CNN-based approach for estimation of vehicle queue length in an urban traffic scenario using low-resolution traffic videos is proposed. The system calculates queue length without the knowledge of any camera parameter or onsite calibration information. The estimation in terms of the number of cars is considered a priority as compared to queue length in the number of meters since the vehicular delay is the number of waiting cars times the wait time. Therefore, this research estimates queue length based on total vehicle count. However, length in meters is also provided by approximating average vehicle size as 5 m. The CNN-based approach helps with accurate tracking of vehicles’ positions and computing queue lengths without the need for installation of any roadside or in-vehicle sensors. Using a pre-trained 80-classes YOLOv4 model, an overall accuracy of 73% and 88% was achieved for vehicle-based and pixel-based queue length estimation. After further fine-tuning of model on the low-resolution traffic images and narrowing down the output classes to vehicle class only, an average accuracy of 83% and 93%, respectively, was achieved which shows the efficiency and robustness of the proposed approach.
In process control, precise level control of liquid in reaction vessels and storage tanks is essential. Tltis work attempts tlte designing, testing, developing and controlling of a coupled tank model using an online self-tuning model free fuzzy controller. This controller is able to intelligently learn, adapt and tune it-self such tltat it can track tlte desired set point with minimal error by adapting its rule consequents using plant's qualitative information only. Simulation results on some non-linear plants and experimental results on tlte real non-linear coupled tank system show that the error arising at tlte plant output can be greatly minimized if the correct value of monotonicity is identified. Real time controlling of tltis non-linear system by the adaptive fuzzy controller witltout any prior knowledge is evidence enough of tlte strength of this controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.