Groundwater plays a major role in agro-hydrological processes in the North China Plain (NCP). The NCP is facing a water deficit, due to a rapid decline in the water table because of the double cropping system. A two crop (maize and wheat) rotation is required to balance the food supply and demand, which leads to an imbalance between evapotranspiration (ET) and precipitation. Thus, there has been a decline of about 1.35 m yr−1 of groundwater (Luancheng Agroecosystem Experimental Station (LAES), NCP) during the last 10 years. Lysimeter experiments were conducted under different irrigation treatments (flood, surface drip, and subsurface drip) to account for ET in the selection of a suitable irrigation method. Subsurface drip irrigation reduced ET by 26% compared to flood irrigation, and 15% compared to surface drip irrigation, with significant grain yield and biomass formation due to decreased evaporation losses. Grain yield, yield components, and above ground biomass were similar in subsurface drip and flood irrigation. However, these biomass parameters were lower with surface drip irrigation. Furthermore, subsurface drip irrigation increased the crop water productivity (24.95%) and irrigation water productivity (19.59%) compared to flood irrigation. The subsurface irrigated plants showed an increase in net photosynthesis (~10%), higher intrinsic water use efficiency (~36%), lower transpiration rate (~22%), and saved 80 mm of water compared to flood irrigation. Our findings indicate that subsurface drip irrigation can be adopted in the NCP to increase water use efficiency, optimize grain yield, and minimize water loss in order to address scarcity.
The North China Plain (NCP) is a major grain production zone that plays a critical role in ensuring China's food supply. Irrigation is commonly used during grain production; however, the high annual water deficit [precipitation (P) minus evapotranspiration (ET)] in typical irrigated cropland does not support double cropping systems (such as maize and wheat) and this has resulted in the steep decline in the water table (~0.8 m year−1 at the Luancheng station) that has taken place since the 1970s. The current study aimed to adapt and check the ability of the CropSyst model (Suite-4) to simulate actual evapotranspiration (ETa), biomass, and grain yield, and to identify major evaporation (E) losses from winter wheat (WW) and summer maize (SM) rotations. Field experiments were conducted at the Luancheng Agro-ecosystem station, NCP, in 2010–2011 to 2012–2013. The CropSyst model was calibrated on wheat/maize (from weekly leaf area/biomass data available for 2012–2013) and validated onto measured ETa, biomass, and grain yield at the experimental station from 2010–2011 to 2011–2012, by using model calibration parameters. The revalidation was performed with the ETa, biomass, grain yield, and simulated ETa partition for 2008–2009 WW [ETa partition was measured by the Micro-lysimeter (MLM) and isotopes approach available for this year]. For the WW crop, E was 30% of total ETa; but from 2010–11 to 2013, the annual average E was ~40% of ETa for the WW and SM rotation. Furthermore, the WW and SM rotation from 2010–2011 to 2012–2013 was divided into three growth periods; (i) pre-sowing irrigation (PSI; sowing at field capacity) to emergence period (EP), (ii) EP to canopy cover period (CC) and (iii) CC to harvesting period (HP), and E from each growth period was ~10, 60, and 30%, respectively. In general, error statistics such as RMSE, Willmott's d, and NRMSE in the model evaluation for wheat ETa (maize ETa) were 38.3 mm, 0.81, and 9.24% (31.74 mm, 0.73, and 11.89%); for wheat biomass (maize biomass) they were 1.25 Mg ha−1, 0.83, and 9.64% (0.78 Mg ha−1, 0.96, and 7.96%); and for wheat grain yield (maize grain yield) they were 0.65 Mg ha−1, 0.82, and 9.87% (0.2 Mg ha−1, 0.99, and 3.79%). The results showed that CropSyst is a valid model that can be use with a reliable degree of accuracy for optimizing WW and SM grain yield production and water requirement on the NCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.