In this paper, a comprehensive review of essential components of the PV (Photovoltaic) system is elaborated, and their comparative unique features are discussed. The paper describes hardware design (power converters topologies specifically) employed in PV based energy generation systems to harvest maximum power from the available energy source. In this study, thirty different Maximum Power Point Tracking (MPPT) techniques have been critically analyzed and their response with respect to partial shading condition has been discussed. It is very difficult to say which technique is best as one must consider various factors and parameters while selecting a technique such as application, convergence speed, accuracy, efficiency, system reliability, and cost and performance of available hardware. Aiming at the complexity, hardware implementation, tracking speed, steady-state accuracy, or global maximum detection of the algorithm, an MPPT algorithm based on a rule table is proposed. In addition, the MPPT of a PV system based on bio inspired techniques is considered. The bio inspired algorithms and its application in PV system are compared for the authenticity of the review, and six different MPPT techniques are implemented on PV systems. A comparative analysis is made based on the results of four different cases of irradiance.
Environmental goals set by world leaders to normalize climate changes are quite difficult to achieve without renewable power generation and suitable transmission technologies like low-frequency AC transmission (LFAC). The LFAC is nowadays becoming a popular choice for long-distance power transmission due to its high efficiency and low losses. This research work investigates the feasibility of employing the LFAC system for subsea transmission and distribution of 58 MW power. In this paper, the simulation model of the LFAC-based subsea transmission and distribution system is presented. This model is composed of several parts such as hexverter as a frequency converter, where a novel control strategy to optimize its zero-sequence circulating current is employed. Detailed mathematical modeling based on active, reactive power constraints and DQ transformation is performed to achieve the control strategy for zero-sequence current optimization. An offshore wind farm is proposed to be integrated with the LFAC subsea system to fulfill the compatibility requirements of the system. The control system of both the grid side and the machine-side inverter of the wind farm is designed to eliminate the real-time disturbances such as wind speed fluctuations and harmonics due to heavy inductive load operating at 16 Hz. To drive the subsea pump, a vector control-based variable-speed drive is employed for the heavy induction motor. A 5 MW, 16 Hz RL load is also added in the model to analyze the effect of general-purpose load. Each component of this system is carefully designed to make it as close to real-time as possible. The whole system is designed for 16 Hz and is compared with the standard 50 Hz system to validate this design.
Penetration of renewable energy resources in modern power systems has increased rapidly. The integration of different renewable and nonrenewable resources for the purpose of electricity generation is referred to as Distributed Generation (DG) units. The penetration of DG units gave birth to the concept of power microgrid. Power inverters play a major role in the integration of DGs in the power system. Control and stability analysis of microgrids in power systems is a challenging task for the control community. Dynamic microgrid modeling demands knowledge of fundamental engineering laws to detailed theoretical analysis. To model the dynamic behavior of the power microgrid, a basic understanding of the power converter operation modes and their control schemes is necessary. The main microgrid modeling components are power converters, power lines, transformers, protection systems, load, and faults. In this paper, preliminary concepts of power systems along with graph theoretic approach are used to develop the model of the microgrid and main grid networks. A mathematical model of a power microgrid in islanded mode, as well as the grid-connected mode, is developed and comprises of generation sources, power inverter interface, protection mechanism, load, faults, and transmission lines. The developed mathematical model can be used to address the stability issues as well as resilience in the power networks for complete system analysis. To validate the mathematical model, a renewable energy-based main grid and microgrid model is simulated. The graphical result of simulated model presents the generation and load curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.