All-photonic response in Silicon (Si) nanoparticles is dominated by magnetic resonance, leading to enhance light concentration for energy harvesting and magnetic imaging applications. The resonance phenomena occur when the natural frequency of the system matches external excitation and is wellexplained by linear circuit analysis. In this paper, we propose a spherical wave impedance approach by employing the basic concept of impedance known at microwave frequencies, where it is defined as the ratio of the electric and magnetic fields to derive necessary magnetic resonance conditions. The model is used to derive various cross-section efficiencies, with results showing close agreement with the Mie solution. The proposed model is simple and compact and defines the resonance phenomena in Si nanoparticles using lumped circuit components, which is necessary for the large-scale all-photonic application of magnetic resonance using dielectric nanoparticles.
Abstract-This energy ramp is an extensive approach in the field of alternativerenewableenergy. It is a mechanismtoproduce electricity by harnessing the kinetic energy of vehicles that drives over the ramp. The objective is to design a system that decreases the energy crisis in Pakistan by utilizing the vehicles kinetic energy. The system can be implemented just before or just after the entrance of e.g. Tool Plazas, Hospitals, U-turns, Airports etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.