In a multi-robot operation, multi-tasking resources are expected to simultaneously perform multiple tasks, thus, reducing the overall time/energy requirement of the operation. This paper presents a task allocation framework named Rostam that efficiently utilizes multi-tasking capable robots. Rostam uses a task clustering mechanism to form robot specific task maps. The customized maps identify tasks that can be multi-tasked by individual robots and mark them for simultaneous execution. The framework then uses an Evolutionary Algorithm along with the customized maps to make quality task allocations. The most prominent contribution of this work is Rostam's flexible design which enables it to handle a range of task allocation scenarios seamlessly. Rostam's performance is evaluated against an auction-based scheme; the results demonstrate its effective use of multi-tasking robots. The paper also demonstrates Rostam's flexibility towards a number of MRTA scenarios through a case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.