Composite state convergence is a novel scheme applied for the bilateral control of a telerobotic system. The scheme offers an elegant design procedure and employs only three communication channels to establish synchronization between a single-master and a single-slave robotic system. This paper expands the capability of the composite state convergence scheme to accommodate any number of master and slave systems and proposes a disturbance observer-based composite state convergence architecture where k-master systems can cooperatively control l-slave systems in the presence of uncertainties. A systematic method is presented to compute the control gains while observer gains are determined in a standard way.To validate the proposed architecture, MATLAB simulations are performed on symmetric and asymmetric arrangements of single-degree-of-freedom teleoperation systems. Finally, experimental results are obtained using Quanser's Qube-Servo systems in QUARC/Simulink environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.