To form a smart production system, the effect of energy and machines’ failure rate plays an important role. The main issue is to make a smart production system for complex products that the system may produce several defective items during a long-run production process with an unusual amount of energy consumption. The aim of the model is to obtain the optimum amount of smart lot, the production rate, and the failure rate under the effect of energy. This study contains a multi-item economic imperfect production lot size energy model considering a failure rate as a system design variable under a budget and a space constraint. The model assumes an inspection cost to ensure product’s quality under perfect energy consumption. Failure rate and smart production rate dependent development cost under energy consumption are considered, i.e., lower values of failure rate give higher values of development cost and vice versa under the effect of proper utilization of energy. The manufacturing system moves from in-control state to out-of-control state at a random time. The theory of nonlinear optimization (Kuhn–Tucker method) is employed to solve the model. There is a lemma to obtain the global optimal solution for the model. Two numerical examples, graphical representations, and sensitivity analysis of key parameters are given to illustrate the model.
Modern supply chains are vulnerable to high impact, low probability disruption risks. A supply chain usually operates in such a network of entities where the resilience of one supplier is critical to overall supply chain resilience. Therefore, resilient planning is a key strategic requirement in supplier selection decisions for a competitive supply chain. The aim of this research is to develop quantitative resilient criteria for supplier selection and order allocation in a fuzzy environment. To serve the purpose, a possibilistic fuzzy multi-objective approach was proposed and an interactive fuzzy optimization solution methodology was developed. Using the proposed approach, organizations can tradeoff between cost and resilience in supply networks. The approach is illustrated using a supply chain case from a garments manufacturing company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.