Poly(lactic acid) (PLA) fiber was developed more than a decade ago. It has been regarded as the most promising sustainable and biodegradable fiber to replace conventional polyethylene terephthalate (PET) polyester fiber in textile products. This paper reviews recent developments in PLA polymerization, PLA filament and fiber spinning, staple yarn spinning, fabric production, dyeing and finishing and aftercare procedures. The properties of PLA fiber are broadly similar to those of PET fiber; however, the properties of PLA fiber that differ, including thermal degradation and low hydrolytic resistance to strong alkaline, significantly affect the method selection and parameter setting of production and processing of PLA fibers and fabrics. PLA filaments are mainly produced by two-step melt spinning to get fibers with stable quality, but degradation at high temperature is still a problem. PLA staple yarns are normally spun using ring spinning. Currently existing knitting or weaving techniques can be used to produce PLA fabrics. PLA fabrics can be dyed with disperse dyes at 110°C, but their color fastness and shades are different from PET fabrics when using the same dyes. The scouring and dyeing of PLA/cotton blended fabrics and the reductive clearing after dyeing remain to be improved. As a new fiber, the entry of PLA fiber into the textile market faces difficult challenges as well as great opportunities in the future.
Silver nanoparticle (AgNP) and AgNP/reduced graphene oxide (rGO) nanocomposite impregnated medical grade polyviscose textile pads were formed using a facile, surface-mediated wet chemical solution-dipping process, without further annealing. Surfaces were sequentially treated in situ with a sodium borohydride (NaBH4) reducing agent, prior to formation, deposition, and fixation of Ag nanostructures and/or rGO nanosheets throughout porous non-woven (i.e., randomly interwoven) fibrous scaffolds. There was no need for stabilising agent use. The surface morphology of the treated fabrics and the reaction mechanism were characterised by Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV–Vis) absorption spectra, X-ray diffraction (XRD), Raman spectroscopy, dynamic light scattering (DLS) energy-dispersive X-ray analysis (EDS), and scanning electron microscopic (SEM). XRD and EDS confirmed the presence of pure-phase metallic silver. Variation of reducing agent concentration allowed control over characteristic plasmon absorption of AgNP while SEM imaging, EDS, and DLS confirmed the presence of and dispersion of Ag particles, with smaller agglomerates existing with concurrent rGO use, which also coincided with enhanced AgNP loading. The composites demonstrated potent antimicrobial activity against the clinically relevant gram-negative Escherichia coli (a key causative bacterial agent of healthcare-associated infections; HAIs). The best antibacterial rate achieved for treated substrates was 100% with only a slight decrease (to 90.1%) after 12 equivalent laundering cycles of standard washing. Investigation of silver ion release behaviours through inductively coupled plasmon optical emission spectroscopy (ICP-OES) and laundering durability tests showed that AgNP adhesion was aided by the presence of the rGO host matrix allowing for robust immobilisation of silver nanostructures with relatively high stability, which offered a rapid, convenient, scalable route to conformal NP–decorated and nanocomposite soft matter coatings.
In situ, time-resolved characterisation of an alginate–acrylamide tough hydrogel dynamic formation process indicate routes to intervention and modification of chemo-physico-mechanical properties.
Flexible AC Transmission Systems (FACTS) are essential devices used for the efficient performance of modern power systems and many developing countries lack these devices. Due to the non-existence of these advanced technologies, the national grid remains weak and vulnerable to power stability issues that can jeopardize system stability. This study proposes novel research to solve issues of an evolving national grid through the installation of FACTS devices. FACTS devices play a crucial role in minimizing active power losses while managing reactive power flows to keep the voltages within their respective limits. Due to the high costs of FACTS, optimization must be done to discover optimal locations as well as ratings of these devices. However, due to the nonlinearity, it is a challenging task to find the optimal locations and appropriate sizes of these devices. Shunt VARs Compensators (SVCs) and Thyristor-Controlled Series Compensators (TCSCs) are the two FACTS devices considered for the study. Optimal locations for SVCs and TCSCs are determined by Voltage Collapse Proximity Index (VCPI) and Line Stability Index (Lmn), respectively. Particle Swarm Optimization (PSO) is employed to find the ideal rating for FACTS devices to minimize the system operating cost (cost due to active power loss and capital cost of FACTS devices). This technique is applied to IEEE (14 and 30) bus systems. Moreover, reliable operation of the electricity grid through the placement of FACTS for developing countries has also been analysed; Pakistan being a developing country has been selected as a case study. The planning problem has been solved for the present as well as for the forecasted power system. Consequently, in the current national network, 6.21% and 6.71% reduction in active and reactive power losses have been observed, respectively. Moreover, voltage profiles have been improved significantly. A detailed financial analysis covering the calculation of Operation Cost (OC) of the national grid before and after the placement of FACTS devices is carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.