Electrocardiogram (ECG) gives essential information about different cardiac conditions of the human heart. Its analysis has been the main objective among the research community to detect and prevent life threatening cardiac circumstances. Traditional signal processing methods, machine learning and its subbranches, such as deep learning, are popular techniques for analyzing and classifying the ECG signal and mainly to develop applications for early detection and treatment of cardiac conditions and arrhythmias. A detailed literature survey regarding ECG signal analysis is presented in this paper. We first introduce a stages-based model for ECG signal analysis where a survey of ECG analysis related work is then presented in the form of this stage-based process model. The model describes both traditional time/frequency-domain and advanced machine learning techniques reported in the published literature at every stage of analysis, starting from ECG data acquisition to its classification for both simulations and real-time monitoring systems. We present a comprehensive literature review of real-time ECG signal acquisition, prerecorded clinical ECG data, ECG signal processing and denoising, detection of ECG fiducial points based on feature engineering and ECG signal classification along with comparative discussions among the reviewed studies. This study also presents a detailed literature review of ECG signal analysis and feature engineering for ECG-based body sensor networks in portable and wearable ECG devices for real-time cardiac status monitoring. Additionally, challenges and limitations are discussed and tools for research in this field as well as suggestions for future work are outlined. INDEX TERMS ECG analysis, cardiac arrhythmias, QRS and ST detection, ECG classification, deep learning.
Cardiovascular diseases have been reported to be the leading cause of mortality across the globe. Among such diseases, Myocardial Infarction (MI), also known as “heart attack”, is of main interest among researchers, as its early diagnosis can prevent life threatening cardiac conditions and potentially save human lives. Analyzing the Electrocardiogram (ECG) can provide valuable diagnostic information to detect different types of cardiac arrhythmia. Real-time ECG monitoring systems with advanced machine learning methods provide information about the health status in real-time and have improved user’s experience. However, advanced machine learning methods have put a burden on portable and wearable devices due to their high computing requirements. We present an improved, less complex Convolutional Neural Network (CNN)-based classifier model that identifies multiple arrhythmia types using the two-dimensional image of the ECG wave in real-time. The proposed model is presented as a three-layer ECG signal analysis model that can potentially be adopted in real-time portable and wearable monitoring devices. We have designed, implemented, and simulated the proposed CNN network using Matlab. We also present the hardware implementation of the proposed method to validate its adaptability in real-time wearable systems. The European ST-T database recorded with single lead L3 is used to validate the CNN classifier and achieved an accuracy of 99.23%, outperforming most existing solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.