Bioaugmentation of Zn solubilizing rhizobacteria could be a sustainable intervention to increase bioavailability of Zn in soil which can be helpful in mitigation of yield loss and malnutrition of zinc. In present study, a number of pure rhizobacterial colonies were isolated from maize rhizosphere and screened for their ability to solubilize zinc oxide. These isolates were screened on the basis of zinc and phosphate solubilization, IAA production, protease production, catalase activity and starch hydrolysis. All the selected isolates were also positive for oxidase activity (except ZM22), HCN production (except ZM27) and utilization of citrate. More than 70% of isolates produces ammonia, hydrogen cyanide, siderophores, exopolysaccharides and cellulase. More than half of isolates also showed potential for urease activity and production of lipase. The ZM31 and S10 were the only isolates which showed the chitinase activity. All these isolates were evaluated in a jar trial for their ability to promote growth of maize under axenic conditions. Results revealed that inoculation of selected zinc solubilizing rhizobacterial isolates improved the growth of maize. In comparison, isolates ZM20, ZM31, ZM63 and S10 were best compared to other tested isolates in stimulating the growth attributes of maize like shoot length, root length, plant fresh and dry biomass. These strains were identified as Bacillus sp. (ZM20), Bacillus aryabhattai (ZM31 and S10) and Bacillus subtilis (ZM63) through 16S rRNA sequencing. This study indicated that inoculation of Zn solubilizing strains have potential to promote growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition.
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Bio-activated organic fertilizers (BOZ) were produced by enriching the zinc oxide (ZnO)-orange peel waste composite with Zn solubilizing bacteria (ZSB: Bacillus sp. AZ6) in various formulations (BOZ1 (9:1), BOZ2 (8:2), BOZ3 (7:3) and BOZ4 (6:4)). The produced BOZs, along with ZnO, ZnSO4, ZSB were applied to maize crop (Zea mays L.) under field conditions in two different cropping season and the growth, yield, physiology, plant Zn contents and quality of maize were investigated. Results revealed significant variation in the aforementioned parameters with the applied amendments. The BOZ4 performed outclass by exhibiting the highest plant growth, yield, physiology, Zn contents, and quality. On average, an increase of 53%, 49%, 19%, 22%, 10%, 4%, and 30% in plant height was noticed with BOZ4 application over control, ZnO, ZnSO4, BOZ1, BOZ2, BOZ3, and ZSB, respectively. BOZ4 enhanced the dry shoot-biomass 46% than control. Likewise, the photosynthetic rate, transpiration rate, stomatal conductance, chlorophyll contents, carotenoids, and carbonic anhydrase activity were increased by 47%, 42%, 45%, 57%, 17%, and 44%, respectively, under BOZ4 over control in both cropping seasons. However, BOZ4 reduced the electrolyte leakage by 38% as compared to control in both cropping seasons. BOZ4 increased the Zn contents of grain and shoot by 46% and 52%, respectively, while reduced the phytate contents by 73% as compared to control. Application of BOZ4 revealed highest average fat (4.79%), crude protein (12.86%), dry matter (92.03%), fiber (2.87%), gluten (11.925%) and mineral (1.53%) contents, as compared to control. In general, the impact of cropping seasons on maize growth, yield, physiology, Zn contents, and quality were non-significant (with few exceptions). Thus, bio-activation of ZnO with ZSB could serve as an efficient and economical strategy for boosting up the growth, yield, physiological, and quality parameters of maize under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.