Back-propagation Neural Network (BPNN) algorithm is one of the most widely used and a popular technique to optimize the feed forward neural network training. Traditional BP algorithm has some drawbacks, such as getting stuck easily in local minima and slow speed of convergence. Nature inspired meta-heuristic algorithms provide derivative-free solution to optimize complex problems. This paper proposed a new meta-heuristic search algorithm, called cuckoo search (CS), based on cuckoo bird's behavior to train BP in achieving fast convergence rate and to avoid local minima problem. The performance of the proposed Cuckoo Search Back-Propagation (CSBP) is compared with artificial bee colony using BP algorithm, and other hybrid variants. Specifically OR and XOR datasets are used. The simulation results show that the computational efficiency of BP training process is highly enhanced when coupled with the proposed hybrid method.Keywords: Back propagation neural network, cuckoo search algorithm, local minima, and artificial bee colony algorithm.
Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum of the error function since gradient descent may get stuck in local minima. As a solution, nature inspired metaheuristic algorithms provide derivative-free solution to optimize complex problems. This paper proposes a new metaheuristic search algorithm called Cuckoo Search (CS) based on Cuckoo bird’s behavior to train Elman recurrent network (ERN) and back propagation Elman recurrent network (BPERN) in achieving fast convergence rate and to avoid local minima problem. The proposed CSERN and CSBPERN algorithms are compared with artificial bee colony using BP algorithm and other hybrid variants algorithms. Specifically, some selected benchmark classification problems are used. The simulation results show that the computational efficiency of ERN and BPERN training process is highly enhanced when coupled with the proposed hybrid method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.