Background
Malaria infection affects the immune response to some vaccines. As Ebola virus (EBOV) outbreaks have occurred mainly in malaria-endemic countries, we have assessed whether asymptomatic malaria affects immune responses to the 2-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen.
Methods
In this sub-study of the EBOVAC-Salone Ebola vaccine trial in Sierra Leone, malaria microscopy was performed at the time of Ebola vaccination. Participants with symptomatic malaria were treated before vaccination. Ebola vaccine responses were assessed post-dose 1 (day 57) and post-dose 2 (day 78) by the EBOV glycoprotein FANG enzyme-linked immunosorbent assay (ELISA), and responses expressed as geometric mean concentrations (GMCs). Geometric mean ratios (GMRs) of the GMCs in malaria-positive versus malaria-negative participants were derived with 95% confidence intervals (CIs).
Results
A total of 587 participants were studied, comprising 188 adults (≥18 years) and 399 children (in age groups of 12–17, 4–11, and 1–3 years). Asymptomatic malaria was observed in 47.5% of adults and 51.5% of children on day 1. Post-dose 1, GMCs were lower in 1–3-year-old malaria-positive compared with malaria-negative children (age group–specific GMR, .56; 95% CI, .39–.81) but not in older age groups. Post-dose 2, there was no consistent effect of malaria infection across the different age groups but there was a trend toward a lower response (GMR, .82; 95% CI, .67–1.02).
Conclusions
The Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen is immunogenic in participants with asymptomatic malaria. Therefore, it is not necessary to screen for asymptomatic malaria infection prior to vaccination with this regimen.
BackgroundConcurrent infections of Plasmodium falciparum with Soil Transmitted Helminths (STH) and Schistosoma spp are still a major public health problem among children living in Sub-Saharan Africa. We conducted two prospective studies among children living in urban and rural settings of Senegal, where control programmes for malaria, STH and schistosomiasis have been sustained, to determine the prevalence of malaria-helminth co-infection.MethodsWe enrolled 910 children aged 1–14 years from Saraya and Diourbel districts of Senegal in June and November 2021, respectively. We collected finger-prick blood samples from the children for malaria parasite detection using microscopy and PCR methods. Stool samples were also collected and Kato-Katz and PCR methods were used to detect STH and S. mansoni; and Merthiolate-iodine-formalin (MIF) test for other intestinal protozoans. Urine samples were analyzed using a filtration test, Point of Care Circulating Cathodic Antigens (POC-CCA) and PCR methods for detection of S. haematobium. Statistical analyses were performed to compare the continuous and categorical variables across the two study sites and age groups, as well as using the adjusted Odds ratios (aOR) to explore risk factors for malaria-helminth co-infections.ResultsThe overall prevalence of polyparasitism with P. falciparum, STH, S. haematobium and S. mansoni among children in the two study sites was 2.2% (20/910) while prevalence of P. falciparum-S. haematobium co-infection was 1.1% (10/910); P. falciparum-S. mansoni 0.7% (6/910) and P. falciparum with any intestinal protozoan 2.4% (22/910). Co-infection was slightly higher among 5–14 year old children (17/629, 2.7%; 95% CI: 1.43–3.97) than 1–4 years (3/281, 1.1%; 95% CI: −0.12–2.32) and, in boys (13/567, 2.3%; 95% CI: 1.27–3.96) than girls (7/343, 2.1%; 95% CI: 0.52–3.48). Children aged 5–14 years (aOR = 3.37; 95% CI: 0.82–13.77, p = 0.09), who were boys (aOR = 1.44; 95% CI: 0.48–4.36, p = 0.51) and lived in Saraya (aOR = 1.27; 95% CI: 0.24–6.69, p = 0.77) had a higher risk of malaria-helminth co-infection than other age group, in girls and those who lived in Diourbel. Living in houses with spaces between the walls and roofs as well as frequent contacts with water during swimming were statistically significant risk factors for malaria-helminth co-infection.ConclusionsThe prevalence of malaria-helminth co-infection is low in two districts in Senegal, possibly due to sustained implementation of effective control measures for malaria and NTDs. These findings could help to develop and implement strategies that would lead to elimination of malaria and helminths in the study areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.