The healthcare services in developed and developing countries are critically important. The use of machine learning techniques in healthcare industry has a vital importance and increases rapidly. The corporations in healthcare sector need to take advantage of the machine learning techniques to obtain valuable data that could later be used to diagnose diseases at much earlier stages. In this study, a research is conducted with the purpose of discovering further use of the machine learning techniques in healthcare sector. Research was conducted by analyzing a well-established dataset called MHEALTH, comprising body motion and vital signs recordings for ten volunteers of diverse profile while performing 12 physical activities. Dataset was analyzed using certain classification algorithms such as Multilayer Perceptron and Support Vector Machine, then results from these algorithms were compared to determine the most utile algorithm for analyzing such dataset. Study aims to determine irregularities using data from body motion and vital signs of volunteers, then these findings can be used either to diagnose particular diseases before they occur and avoid them. Results can also be used to monitor movements of ill or elderly people and observe whether they are doing any prohibited movements that would lead them to injuries or further illnesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.