Magnetic gears (MGs) have many advantages over mechanical gears, including high efficiency, no contact, no lubrication, and low noise. Even though MGs are energy-efficient, cogging torque and torque ripple are always challenging, especially in low-speed applications. Generally, the cancellation of cogging torque enhances the performance of the operation of PM machines. This article proposes an approach based on slicing technique through which reduced cogging torque and improved torque density can be achieved in MGs. The two-dimensional finite element method (2D FEM) has been used to analyze the models using Simcenter and MATLAB software packages. The results show that the elimination of cogging torque of the proposed models compared to the base model is 97.53% on the inner rotor, and that of the outer rotor is 42.23%. Also, the torque density is slightly improved by 0.05% on the inner rotor while 0.1% improvement on the outer rotor is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.