The lethal infection, World Health Organization (WHO) reported coronavirus (COVID-19) as a pandemic. Lack of proper vaccine, low levels of immunity against COVID-19 has led to vulnerability of the human beings. Due to lack of vaccine treatment, the only options left to fight against this pandemic are lockdown and social distance. This work offers an autonomous monitoring system on social distancing using deep learning techniques. The proposed architecture tracks the humans on roads and calculates their distance between each other. This surveillance detects the furore violation of social distance utilizing CCTV cameras. The proposed framework uses YOLOv3 object-detection model built on COCO dataset and used to classify human class among 79 classes. The bounding-box's dimensions and centroid coordinates are computed in the two-dimensional feature space from the pairwise vectorized L2 norm and a threshold is fixed for computing the distance maintained between each other. We illustrate the superior performance of our framework checked against other state of the arts regarding inference speed, mean average precision and loss defined from the localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.