Nowadays, the need for energy is increasing day by day. In order to meet this demand, renewable energy sources that have a more environmentally friendly structure than fossil-based sources come to the fore. In recent years, researchers have been paying great attention to wind energy. Because it has the many economic and environmental advantages. In particular, wind speed is very important parameter for electric energy production form wind energy. Therefore, estimation of wind speed is very important for both investors and manufacturers. A hybrid model for wind speed estimation with deep learning methods is proposed in this study. The proposed model consists two main deep learning methods (Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU)). The proposed model was applied in two case studies (weekly and monthly wind speed estimation). The reliability and accuracy of the proposed model were tested by performance criteria (MAPE, R 2 , RMSE). In order to measure the success of the model, a comparison was made with 5 different deep learning methods (CNN-LSTM, CNN-RNN, LSTM-GRU, LSTM, GRU). It has been observed that the CNN-GRU hybrid model, which was used for the first time in the field of wind speed forecasting, achieved a high percentage of success as a result of comparisons made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.