Risk analysis (RA) contains several methodologies that object to ensure the protection and safety of occupational stakeholders. Multi attribute decision-making (MADM) is one of the most important RA methodologies that is applied to several areas from manufacturing to information technology. With the widespread use of computer networks and the Internet, information security has become very important. Information security is vital as institutions are mostly dependent on information, technology, and systems. This requires a comprehensive and effective implementation of information security RA. Analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are commonly used MADM methods and recently used for RA. In this study, a new RA methodology is proposed based on AHP-TOPSIS integration extended with Pythagorean fuzzy sets. AHP strengthened by interval-valued Pythagorean fuzzy numbers is used to weigh risk parameters with expert judgment. Then, TOPSIS with Pythagorean fuzzy numbers is used to prioritize previously identified risks. A comparison of the proposed approach with three approaches (classical RA method, Pythagorean fuzzy VIKOR and Pythagorean fuzzy MOORA) is also provided. To illustrate the feasibility and practicality of the proposed approach, a case study for information security RA in corrugated cardboard sector is executed.
In the developing world, cancer death is one of the major problems for humankind. Even though there are many ways to prevent it before happening, some cancer types still do not have any treatment. One of the most common cancer types is breast cancer, and early diagnosis is the most important thing in its treatment. Accurate diagnosis is one of the most important processes in breast cancer treatment. In the literature, there are many studies about predicting the type of breast tumors. In this research paper, data about breast cancer tumors from Dr. William H. Walberg of the University of Wisconsin Hospital were used for making predictions on breast tumor types. Data visualization and machine learning techniques including logistic regression, k-nearest neighbors, support vector machine, naïve Bayes, decision tree, random forest, and rotation forest were applied to this dataset. R, Minitab, and Python were chosen to be applied to these machine learning techniques and visualization. The paper aimed to make a comparative analysis using data visualization and machine learning applications for breast cancer detection and diagnosis. Diagnostic performances of applications were comparable for detecting breast cancers. Data visualization and machine learning techniques can provide significant benefits and impact cancer detection in the decision-making process. In this paper, different machine learning and data mining techniques for the detection of breast cancer were proposed. Results obtained with the logistic regression model with all features included showed the highest classification accuracy (98.1%), and the proposed approach revealed the enhancement in accuracy performances. These results indicated the potential to open new opportunities in the detection of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.