<abstract><p>In this paper, we introduce and study a new subclass of normalized analytic functions, denoted by</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathcal F_{\left(\beta,\gamma\right)} \bigg(\alpha,\delta,\mu,H\big(z,C_{n}^{\left(\lambda \right)} \left(t\right)\big)\bigg), $\end{document} </tex-math></disp-formula></p>
<p>satisfying the following subordination condition and associated with the Gegenbauer (or ultraspherical) polynomials $ C_{n}^{\left(\lambda\right)}(t) $ of order $ \lambda $ and degree $ n $ in $ t $:</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \alpha \left(\frac{zG^{'}\left(z\right)}{G\left(z\right)} \right)^{\delta}+\left(1-\alpha\right)\left(\frac{zG^{'} \left(z\right)}{G\left(z\right)}\right)^{\mu} \left(1+\frac{zG^{''}\left(z\right)}{G^{'} \left(z\right)} \right)^{1-\mu} \prec H\big(z,C_{n}^{\left(\lambda\right)} \left(t\right)\big), $\end{document} </tex-math></disp-formula></p>
<p>where</p>
<p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ H\big(z,C_{n}^{\left(\lambda\right)}\left(t\right)\big) = \sum\limits_{n = 0}^{\infty} C_n^{(\lambda)}(t)\;z^n = \left(1-2tz+z^2\right)^{-\lambda}, $\end{document} </tex-math></disp-formula></p>
<p><disp-formula> <label/> <tex-math id="FE4"> \begin{document}$ G\left(z\right) = \gamma \beta z^{2} f^{''} \left(z\right)+\left(\gamma-\beta \right)zf^{'} \left(z\right)+\left(1-\gamma+\beta\right)f\left(z\right), $\end{document} </tex-math></disp-formula></p>
<p>$ 0\leqq \alpha \leqq 1, $ $ 1\leqq \delta \leqq 2, $ $ 0\leqq \mu \leqq 1, $ $ 0\leqq \beta \leqq \gamma \leqq 1 $, $ \lambda \geqq 0 $ and $ t\in \left(\frac{1}{\sqrt{2}}, 1\right] $. For functions in this function class, we first derive the estimates for the initial Taylor-Maclaurin coefficients $ \left|a_{2}\right| $ and $ \left|a_{3}\right| $ and then examine the Fekete-Szegö functional. Finally, the results obtained are applied to subclasses of normalized analytic functions satisfying the subordination condition and associated with the Legendre and Chebyshev polynomials. The basic or quantum (or $ q $-) calculus and its so-called trivially inconsequential $ (p, q) $-variations have also been considered as one of the concluding remarks.</p></abstract>
In this paper,we define a class of analytic functions F (β,λ) (H, α, δ, µ) , satisfying the following subordinate condition associated with Chebyshev polynomialswhereWe obtain initial coefficients |a2| and |a3| for this subclass by means of Chebyshev polynomials expansions of analytic functions in D. Furthermore, we solve Fekete-Szegö problem for functions in this subclass.We also provide relevant connections of our results with those considered in earlier investigations. The results presented in this paper improve the earlier investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.