The high concentration of grain boundaries provided by nanostructuring is expected to lower the thermal conductivity of thermoelectric materials, which favors an increase in their thermoelectric figure‐of‐merit, ZT. A novel chemical alloying method has been used for the synthesis of nanoengineered‐skutterudite CoSb3. The CoSb3 powders were annealed for different durations to obtain a set of samples with different particle sizes. The samples were then compacted into pellets by uniaxial pressing under various conditions and used for the thermoelectric characterization. The transport properties were investigated by measuring the Seebeck coefficient and the electrical and thermal conductivities in the temperature range 300 K to 650 K. A substantial reduction in the thermal conductivity of CoSb3 was observed with decreasing grain size in the nanometer region. For an average grain size of 140 nm, the thermal conductivity was reduced by almost an order of magnitude compared to that of a single crystalline or highly annealed polycrystalline material. The highest ZT value obtained was 0.17 at 611 K for a sample with an average grain size of 220 nm. The observed decrease in the thermal conductivity with decreasing grain size is quantified using a model that combines the macroscopic effective medium approaches with the concept of the Kapitza resistance. The compacted samples exhibit Kapitza resistances typical of semiconductors and comparable to those of Si–Ge alloys.
This article provides an up-to-date review on nanocomposites composed of inorganic nanoparticles and the polymer matrix for optical and magnetic applications. Optical or magnetic characteristics can change upon the decrease of particle sizes to very small dimensions, which are, in general, of major interest in the area of nanocomposite materials. The use of inorganic nanoparticles into the polymer matrix can provide high-performance novel materials that find applications in many industrial fields. With this respect, frequently considered features are optical properties such as light absorption (UV and color), and the extent of light scattering or, in the case of metal particles, photoluminescence, dichroism, and so on, and magnetic properties such as superparamagnetism, electromagnetic wave absorption, and electromagnetic interference shielding. A general introduction, definition, and historical development of polymer–inorganic nanocomposites as well as a comprehensive review of synthetic techniques for polymer–inorganic nanocomposites will be given. Future possibilities for the development of nanocomposites for optical and magnetic applications are also introduced. It is expected that the use of new functional inorganic nano-fillers will lead to new polymer–inorganic nanocomposites with unique combinations of material properties. By careful selection of synthetic techniques and understanding/exploiting the unique physics of the polymeric nanocomposites in such materials, novel functional polymer–inorganic nanocomposites can be designed and fabricated for new interesting applications such as optoelectronic and magneto-optic applications.
Immobilization of bovine serum albumin (BSA) on surface-modified superparamagnetic iron oxide nanoparticles (SPION) has been performed by two different double-step immobilization approaches. The first approach consists of preparation of SPION by controlled chemical coprecipitation in the presence of BSA solution, whereas the second approach includes preliminary surface modification of SPION with an amine group using a coupling agent of 3-aminepropyltrimethoxysilane (APTMS). Both procedures are followed by 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide hydrochloride (EDC) activation with sequential immobilization of the layer of BSA. Additionally, an attempt to modify the surface of SPION with amine and carboxylic groups is undertaken by using l-aspartic acid (LAA). TEM shows that the particle size varies in the range 10−15 nm and does not change significantly after the coating process. The presence of BSA and amine groups on the surface of SPION is confirmed by FT-IR. Magnetic properties are investigated by VSM and results indicate that the superparamagnetic properties are retained for BSA-coated SPION while reducing the value of saturation magnetization (M s). The binding capacity is estimated from thermogravimetric and chemical analyses. APTMS-coated SPION show higher BSA binding capacity compared to that of coprecipitated SPION in the presence of BSA. In vitro tests have been performed after the functionalization of SPION with LAA and BSA. Human dermal fibroblasts are incubated with the surface-modified SPION for 6 and 24 h to observe cell behavior, morphology, cytoskeletal organization, and interactions between cell and SPION. BSA-coated SPION incubated with cells demonstrated a cell response similar to that of control cells, with no adverse cell damage and no endocytosis, whereas LAA-coated SPION show partial endocytosis without cytoskeletal disorganization.
Neutrophils were previously shown to digest oxidized carbon nanotubes through a myeloperoxidase (MPO)-dependent mechanism, and graphene oxide (GO) was found to undergo degradation when incubated with purified MPO, but there are no studies to date showing degradation of GO by neutrophils. Here we produced endotoxin-free GO by a modified Hummers' method and asked whether primary human neutrophils stimulated to produce neutrophil extracellular traps or activated to undergo degranulation are capable of digesting GO. Biodegradation was assessed using a range of techniques including Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and mass spectrometry. GO sheets of differing lateral dimensions were effectively degraded by neutrophils. As the degradation products could have toxicological implications, we also evaluated the impact of degraded GO on the bronchial epithelial cell line BEAS-2B. MPO-degraded GO was found to be non-cytotoxic and did not elicit any DNA damage. Taken together, these studies have shown that neutrophils can digest GO and that the biodegraded GO is non-toxic for human lung cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.