Construction sector has an important place in Turkey’s economy. Real estate sales for the sector are increasing in parallel. However, the purchase cost is also important for those who are willing to buy a real estate. In the acquisition of real estate, factors such as size, location and age of the house are taken into consideration. The aim of the article is to conduct research on factors affecting real estate values by data mining. In this study, the most important variables that determine the value of the real estate have been investigated by data mining methods. The research has been carried out in Karabük and the variables determined according to the opinions of real estate experts. As classification methods, CHAID and C&RT algorithms have been used. It has been evaluated that both algorithm estimation results can be used. Within the framework of the study, the variables that have the most impact on the unit price have been determined, such as the size of the real estate, the distance to the city centre, the popularity, and the age of the building. The use of advanced technologies, such as statistical modelling and machine learning in real estate valuation and automatic value estimation, is of importance in determining the real value of the real estate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.