Test-based automatic program repair has attracted a lot of attention in recent years. However, the test suites in practice are often too weak to guarantee correctness and existing approaches often generate a large number of incorrect patches.To reduce the number of incorrect patches generated, we propose a novel approach that heuristically determines the correctness of the generated patches. The core idea is to exploit the behavior similarity of test case executions. The passing tests on original and patched programs are likely to behave similarly while the failing tests on original and patched programs are likely to behave differently. Also, if two tests exhibit similar runtime behavior, the two tests are likely to have the same test results. Based on these observations, we generate new test inputs to enhance the test suites and use their behavior similarity to determine patch correctness.Our approach is evaluated on a dataset consisting of 139 patches generated from existing program repair systems including jGen-Prog, Nopol, jKali, ACS and HDRepair. Our approach successfully prevented 56.3% of the incorrect patches to be generated, without blocking any correct patches.
This paper tackles the important, difficult problem of detecting program inputs that trigger large floating-point errors in numerical code. It introduces a novel, principled dynamic analysis that leverages the mathematically rigorously analyzed condition numbers for atomic numerical operations, which we call atomic conditions, to effectively guide the search for large floating-point errors. Compared with existing approaches, our work based on atomic conditions has several distinctive benefits: (1) it does not rely on high-precision implementations to act as approximate oracles, which are difficult to obtain in general and computationally costly; and (2) atomic conditions provide accurate, modular search guidance. These benefits in combination lead to a highly effective approach that detects more significant errors in real-world code (e.g., widely-used numerical library functions) and achieves several orders of speedups over the state-of-the-art, thus making error analysis significantly more practical. We expect the methodology and principles behind our approach to benefit other floating-point program analysis tasks such as debugging, repair and synthesis. To facilitate the reproduction of our work, we have made our implementation, evaluation data and results publicly available on GitHub at https://github.com/FP-Analysis/atomic-condition. CCS Concepts: • Software and its engineering → General programming languages; Software testing and debugging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.