Wireless networked control systems (WNCS) consist of an actuator, sensor, and controller communicating over wireless networks in place of traditional point-to-point wired connection. Due to their main advantages, a decrease in maintenance costs, more flexibility, and safety could be achieved. As a result, it attracted a great deal of interest, but packet losses and time delays in the wireless network through transmitting and receiving the data are considered very challenging issues, which impair the output accuracy of the WNCS and can affect the entire system stability. In this study, integer-order proportional integral-proportional derivative (PI-PD) and fractional-order PI-PD (FOPI-FOPD) controllers are proposed to reduce the effect of expected packet loss in a WNCS to improve system performance. At high packet loss percent, the PI controller is introduced to act as a compensator in the feed-forward loop to keep the system stable. MATLAB/Simulink and Truetime simulator are used to simulate the WNCS. The rotary inverted pendulum (RIP) is utilized as the object of the controllers. Grey wolf optimization (GWO) algorithm is used to find the optimal controllers and compensator parameters. The simulation results showed that the FOPI-FOPD is superior to PI-PD in the packet loss compensation.
The rotary inverted pendulum (RIP) has been used in various control application areas. This system can be represented as two degree of freedom (2-DOF), consisting of a rotating arm and rotating pendulum rod. RIP is an excellent example of designing a single-input multi-output (SIMO) system. Due to unstable RIP system dynamics, and its nonlinear model, multiple control techniques have been used to control this system. This paper uses integer and fractional order proportional integral-proportional derivative (PI-PD) controllers to stabilize the pendulum in the vertical direction. Constrained optimization approaches, such as the grey wolf optimization (GWO) methodology, are utilized to estimate the parametric values of the controllers. The simulation results showed that the fractional order PI-PD controller outperforms the integer order PI-PD controller with and without disturbance signal existence. A multiple results comparison has illustrated the superiority of fractional order controller over a previous work.
Wireless Networked Control System (WNCS) is made up of an actuator, sensor, and controller that communicates through a wireless network rather than typical point-to-point cable connections. Lower maintenance costs, greater flexibility, and increased safety are the main WNCS advantages, so as a result, it has attracted a lot of researchers. Nevertheless, time delays and packet losses in wireless data transmission are classified as complicated problems, which impair WNCS output accuracy and may influence the overall system stability. Integer-Order PI-PD (PI-PD) and Fractional-Order PI-PD (FOPI-FOPD) controllers are proposed to reduce the impact of the control signal transmission's time delay and improve system performance. Matlab Simulink and True-time simulator are used to simulate the WNCS, and ZigBee protocol is used in transceiving the control signal between the controller and the system. Rotary Inverted Pendulum (RIP) acted as the controller's objective. The Grey Wolf Optimization (GWO) technique is utilized to evaluate the best controller parameters. Xbee S2 modules are used to implement the signal transmission process over ZigBee protocol. The FOPI-FOPD controller outperforms the PI-PD controller in the simulation and experimental results in decreasing the influence of time delay on system stability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.