This research aims to design an Active Magnetic Bearing (AMB) after performing an optimization process via reducing the number of poles and by reducing air gap, Dia. Yoke, and Z-length (deep of model). To increase the performance of a radial Active Magnetic Bearing (AMB), all particular equations of design based on the Genetic Algorithm method by using ANSYS Maxwell (Version 17.1) program of electro-magnetic have been studied. Manufacturing an active magnetic bearing standing for two counts, each one containing 12 poles instead of 16, led to a significant improvement in the performance. Some conclusions were obtained, including the complications in the control system will be reduced when they are linked in AMB. The complexities of the control system are inversely proportional to the number of poles and the model covered in this study is made of a material with good engineering and magnetic characteristics steel 37-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.