Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as "kalatakalata," the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V 1a receptors, members of the G proteincoupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands.yclotides are head-to-tail cyclized plant peptides containing three conserved disulfide bonds in a knotted arrangement known as a cyclic cystine-knot motif (1). This confers them high stability (2) and presumably improves their oral bioactivity relative to their linear counterparts (3). They were first discovered in a decoction of Oldenlandia affinis DC. (Rubiaceae) leaves, an herbal remedy used in traditional African medicine during childbirth (4). The observed induction of labor and shortened delivery time were later studied on isolated rat and rabbit uteri and on human uterine strips (4, 5). The peptides responsible for the contractility effects (5) raised interest because they survived boiling, presumably as a result of their unique 3D structure, which was elucidated in 1995 (6). Since then, several plant species of the coffee (Rubiaceae) (7), violet (Violaceae) (8), legume (Fabaceae) (9), potato (Solanaceae) (10) and grass (Poaceae) families (11) have been identified to produce cyclotides. Currently, ∼300 sequences have been reported (12), and the predicted number of >50,000 cyclotides in Rubiaceae alone (7) suggests them to be one of the largest peptide classes within the plant kingdom. Their high intercysteine sequence variability and structural plasticity (13), together with intrinsic bioactivities, make them interesting templates for the development of novel pharmaceuticals (14).However, five decades after the discovery of cyclotides, there still is not any information about specific molecular targe...
Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.
Bioconjugates composed of chlorotoxin and near infrared fluorescent (NIRF) moieties are being advanced toward human clinical trials as intra-operative imaging agents that will enable surgeons to visualize small foci of cancer. In previous studies, the NIRF molecules were conjugated to chlorotoxin, which results in a mixture of mono-, di-, and tri-labeled peptide. Here we report a new chemical entity that bound only a single NIRF molecule. The lysines at positions 15 and 23 were substituted with either Ala or Arg, which resulted in only mono-labeled peptide that was functionally equivalent to native chlorotoxin:Cy5.5. We also analyzed the serum stability and serum half life of cyclized chlorotoxin, which showed an 11 hour serum half life and resulted in a mono-labeled product. Based on these data, we propose to advance a mono-labeled chlorotoxin to human clinical trials.
The α3β4 nAChRs are implicated in pain sensation in the PNS and addiction to nicotine in the CNS. We identified an α-4/6-conotoxin (CTx) TxID from Conus textile. The new toxin consists of 15 amino acid residues with two disulfide bonds. TxID was synthesized using solid phase methods and the synthetic peptide was functionally tested on nAChRs heterologously expressed in Xenopus laevis oocytes. TxID blocked rat α3β4 nAChRs with a 12.5 nM IC50, which places it amongst the most potent α3β4 nAChR antagonists. TxID also blocked the closely related α6/α3β4 with a 94 nM IC50 but showed little activity on other nAChR subtypes. NMR analysis showed that two major structural isomers exist in solution, one of which adopts a regular α-CTx fold but with different surface charge distribution to other 4/6 family members. α-CTx TxID is a novel tool with which to probe the structure and function of α3β4 nAChRs.
Cyclic α-conotoxin Vc1.1 (cVc1.1) is an orally active peptide with analgesic activity in rat models of neuropathic pain. It has two disulfide bonds, which can have three different connectivities, one of which is the native and active form. In this study we used computational modeling and nuclear magnetic resonance to design a disulfide-deleted mutant of cVc1.1, [C2H,C8F]cVc1.1, which has a larger hydrophobic core than cVc1.1 and, potentially, additional surface salt bridge interactions. The new variant, hcVc1.1, has similar structure and serum stability to cVc1.1 and is highly stable at a wide range of pH and temperatures. Remarkably, hcVc1.1 also has similar selectivity to cVc1.1, as it inhibited recombinant human α9α10 nicotinic acetylcholine receptor-mediated currents with an IC50 of 13 μM and rat N-type (Cav2.2) and recombinant human Cav2.3 calcium channels via GABAB receptor activation, with an IC50 of ~900 pM. Compared to cVc1.1, the potency of hcVc1.1 is reduced three-fold at both analgesic targets, whereas previous attempts to replace Vc1.1 disulfide bonds by non-reducible dicarba linkages resulted in at least 30-fold decreased activity. Because it has only one disulfide bond, hcVc1.1 is not subject to disulfide bond shuffling and does not form multiple isomers during peptide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.