Behavior of reinforced concrete beam cannot be captured by elastic damage models or elastic-plastic constitutive laws only. When these two models coupled, load deflection behavior of reinforced concrete can be observed through numerical modeling. Thus, using concrete damage plasticity approach in finite element modeling can lead researches for sufficient numerical results when compared to experimental tests. In order to determine the material damage model of concrete, some laboratory tests are required. This paper offers an equation for damage parameter to capture damage behavior. In addition, modeling strategies are developed by checking the model sensitivity against mesh density, dilation angle and fracture energy of concrete. Finite element models are verified by three different experimental tests. In this study ABAQUS finite element software is employed to model reinforced concrete beam with concrete damage plasticity approach. This study shows that difference between the results from numerical models and experimental tests are in acceptable range.
Bending test of seven reinforced concrete beams are modeled in finite element program to validate the modeling strategies by comparing the structural response of the beams. Three beams in the set are pre-damaged and strengthened with fiber reinforced composites before the bending tests. Cracks are implemented into the model by inserting geometrical discontinuities to represent the pre-damaged beams. Parametric variables such as crack width, length and interval are chosen to simulate different pre-damage levels. Once the proposed modeling strategies are validated by real experimental tests then 196 finite element models are created to study the effects of pre-damage levels on the moment capacity of reinforced concrete beams repaired with CFRP. Results indicate that inclusion of pre-damage levels by means of cracks into the cross sections have significant effect on beams moment capacity.Keywords: reinforced concrete beams, FRP, finite element, crack, nonlinear analysis, concrete damaged plasticity. Reference to this paper should be made as follows: Aktas, M.; Sumer, Y. 2014. Nonlinear finite element analysis of damaged and strengthened reinforced concrete beams, Journal of Civil Engineering and Management 20(2): 201-210. http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.