Bantuan sosial merupakan salah satu cara pemerintah untuk menanggulangi kemiskinan yang bertujuan agar terpenuhinya kebutuhan masyarakat dengan ekonomi rendah dan meningkatkan taraf hidup penerima bantuan sosial. Proses penentuan penerima bantuan sosial di Desa Sroyo masih menggunakan cara manual yaitu dengan mengisi formulir dalam bentuk kertas dan diseleksi satu persatu sehingga membutuhkan waktu relatif lama dan kurang optimal. Jika semakin banyak kertas yang menumpuk maka data akan lebih rentan rusak dan hilang. Untuk mengatasi permasalahan tersebut perlunya sistem yang dapat mempermudah proses seleksi penerima bantuan sosial di Desa Sroyo dalam hal ini yaitu sistem pendukung keputusan yang didukung dengan metode Simple Additive Weighting (SAW). Pengembangan sistem pendukung keputusan ini dikembangkan dengan metode waterfall menggunakan bahasa pemrograman PHP (PHP: Hypertext Preprocessor), Framework Code Igniter 3 serta database MySQL sebagai database server. Dari hasil perhitungan menggunakan metode SAW diperoleh rekomendasi nama-nama penerima program bantuan sosial berdasarkan perankingan. Selain itu berdasarkan hasil pengujian blackbox sistem ini berjalan sesuai dengan fungsinya.
Financial crisis prediction is a critical issue in the economic phenomenon. Correct predictions can provide the knowledge for stakeholders to make policies to preserve and increase economic stability. Several approaches for predicting the financial crisis have been developed. However, the classification model's performance and prediction accuracy, as well as legal data, are insufficient for usage in real applications. So that, an efficient prediction model is required for higher performance results. This paper adopts a novel two-hybrid intelligent prediction model using an Artificial Neural Network (ANN) for prediction and Particle Swarm Optimization (PSO) for optimization. At first, a PSO technique produces the hyperparameter value for ANN to fit the best architecture. They are weights and thresholds. Then, they are used to predict the performance of the given dataset. In the end, ANN-PSO generates predictions value of crisis conditions. The proposed ANN-PSO model is implemented on time series data of economic conditions in Indonesia. Dataset was obtained from International Monetary Fund and the Indonesian Economic and Financial Statistics. Independent variable data using 13 potential indicators, namely imports, exports, trade exchange rates, foreign exchange reserves, the composite stock price index, real exchange rates, real deposit rates, bank deposits, loan and deposit interest rates, the difference between the real BI rate and the real FED rate, the M1, M2 multiplier, and the ratio of M2 to foreign exchange reserves. Meanwhile, the dependent variable uses the perfect signal value based on the Financial Pressure Index. A detailed statistical analysis of the dataset is also given by threshold value to convey crisis conditions. Experimental analysis shows that the proposed model is reliable based on the different evaluation criteria. The case studies show that the result for predictive data is basically consistent with the actual situation, which has greatly helped the prediction of a financial crisis.
Perkembangan teknologi informasi di berbagai bidang terus mengalami kemajuan yang pesat. Berkembangnya teknologi informasi semakin menegaskan perannya yang begitu penting dalam memberikan kemudahan dalam menyelesaikan berbagai kegiatan manusia. Koperasi Serba Usaha Mandiri Sukses UMS adalah sebuah koperasi yang melayani dosen dan karyawan di ruang lingkup Universitas Muhammadiyah Surakarta. Dengan jumlah anggota lebih dari 600 orang dan terus bertambah, diperlukan sebuah sistem informasi berbasis web untuk memudahkan akses informasi bagi anggota dan calon anggota baru. Informasi yang disajikan di web ini meliputi profil koperasi beserta visi dan misinya, penjelasan tentang layanan yang dimiliki oleh koperasi, dan informasi pendaftaran calon anggota baru. Web ini akan dibangun menggunakan teknologi framework CodeIgniter 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.