In this work, the impacts of wafer doping type on structural and optical properties of black silicon (b-Si) fabricated by metal-assisted chemical etching (MACE) process are investigated. P-type and n-type mono-crystalline silicon (mono c-Si) wafers are etched in an aqueous solution of hydrofluoric acid (HF), silver nitrate (AgNO3) and deionised water (DI H2O) at room temperature and various durations from 5-20 minutes. Surface morphological results demonstrate the formation of b-Si nanowires (NWs) with average lengths of 0.4-0.8 μm for p-type wafers and 0.8-3.0 μm for n-type wafers. The higher length of the NWs for the n-type wafers is due to the minority charge carriers, which lead to a higher etching rate during the MACE process. Within the 300-1100 nm wavelength region, weighted average reflection (WAR) for the p-type and n-type wafers decreases to 6.6% and 6.4%, respectively, after 20 minutes of etching. The corresponding improvement in broadband light absorption results in maximum potential short-circuit current density (Jsc (max)) of 38.2 and 38.8 mA/cm2 for the p-type and n-type b-Si, respectively, which is an of enhancement of 39.9% and 42.1% when compared to the Jsc (max) of planar c-Si reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.