Detecting defects on surfaces such as steel, can be a challenging task because defects have complex and unique features. These defects happen in many production lines and differ between each one of these production lines. In order to detect these defects, the You Only Look Once (YOLO) detector which uses a Convolutional Neural Network (CNN), is used and received only minor modifications. YOLO is trained and tested on a dataset containing six kinds of defects to achieve accurate detection and classification. The network can also obtain the coordinates of the detected bounding boxes, giving the size and location of the detected defects. Since manual defect detection is expensive, labor-intensive and inefficient, this paper contributes to the sophistication and improvement of manufacturing processes. This system can be installed on chipsets and deployed to a factory line to greatly improve quality control and be part of smart internet of things (IoT) based factories in the future. YOLO achieves a respectable 70.66% mean average precision (mAP) despite the small dataset and minor modifications to the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.