With the increase of e-commerce platforms and online applications, businessmen are looking to have a rating and review system through which they can easily reveal the feelings of customers related to their products and services. It is undeniable from the statistics that online ratings and reviews attract new customers as well as increase sales by means of providing confidence, ratification, opinions, comparisons, merchant credibility, etc. Although considerable research has been devoted to the sentiment analysis for review classification, rather less attention has been paid to the text preprocessing which is a crucial step in opinion mining especially if convenient preprocessing strategies are found out to increase the classification accuracy. In this paper, we concentrate on the impact of simple text preprocessing decisions in order to predict fine-grained review rating stars whereas the majority of previous work focused on the binary distinction of positive vs. negative. Therefore, the aim of this research is to analyze preprocessing techniques and their influence, at the same time explain the interesting observations and results on the performance of a five-class-based review rating classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.