Abstract:Having an important role in CAD and CAM systems the Bezier and B-spline curves and surfaces and NURBS modelling are based on control points belongs to these curves and surfaces. So the invariants of these curves and surfaces are the invariants of the control points of these curves and surfaces. In this study we studied the equivalence conditions of compared two different control point systems under the linear similarity transformations LS(2) in R 2 according to the invariant system of these control points. Finally the equivalence conditions of two planar Bezier curves is examined.
The purpose of our paper is to investigate N-Bishop frame of the quadratic Bezier curve which is one of the effective methods for computer-aided geometric design (CAGD). Then the N-Bishop curvatures and derivative formulas for quadratics Bezier curve are calculated and give some numeric examples.
Bezier surfaces are commonly used in Computer-Aided Geometric Design since it enables in geometric modeling of the objects. In this study, the shape operator of the timelike and spacelike surfaces has been analyzed in Minkowski-3 space. Then, the obtained results were applied to a numeric example
Özk-bilinmeyenli reel kaysayılı tüm G-invaryant rasyonel fonksiyonların kümesi (x 1 ,x 2 ,…,x k ) ile gösterilir. Üç boyutlu ℝ 3 Öklid uzayında benzerlik dönüşümleri grubu G = S(3) olmak üzere, bu çalışmada ℝ 3 de verilen ve k vektörden oluşan = { 1 , 2 , … , } kümesinin rasyonel S(3)-invaryantlarını tam olarak belirleyebilmek için G grubuna göre invaryant rasyonel fonksiyonlar cismi olan R(x1,x2,…,xk) G cisminin üreteç kümesi ifade edilmiştir. Böylece A kümesinin herhangi bir S(3) invaryantı bu üreteç kümenin elemanlarının bir fonksiyonu olarak ifade edilebilecektir. Anahtar kelimeler:G-invariant foksiyonlar,benzerlik dönüşümü,üreteç invaryantlar, S(3)-invaryant rasyonel fonksiyonlar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.