It is increasingly difficult to identify complex cyberattacks in a wide range of industries, such as the Internet of Vehicles (IoV). The IoV is a network of vehicles that consists of sensors, actuators, network layers, and communication systems between vehicles. Communication plays an important role as an essential part of the IoV. Vehicles in a network share and deliver information based on several protocols. Due to wireless communication between vehicles, the whole network can be sensitive towards cyber-attacks.In these attacks, sensitive information can be shared with a malicious network or a bogus user, resulting in malicious attacks on the IoV. For the last few years, detecting attacks in the IoV has been a challenging task. It is becoming increasingly difficult for traditional Intrusion Detection Systems (IDS) to detect these newer, more sophisticated attacks, which employ unusual patterns. Attackers disguise themselves as typical users to evade detection. These problems can be solved using deep learning. Many machine-learning and deep-learning (DL) models have been implemented to detect malicious attacks; however, feature selection remains a core issue. Through the use of training empirical data, DL independently defines intrusion features. We built a DL-based intrusion model that focuses on Denial of Service (DoS) assaults in particular. We used K-Means clustering for feature scoring and ranking. After extracting the best features for anomaly detection, we applied a novel model, i.e., an Explainable Neural Network (xNN), to classify attacks in the CICIDS2019 dataset and UNSW-NB15 dataset separately. The model performed well regarding the precision, recall, F1 score, and accuracy. Comparatively, it can be seen that our proposed model xNN performed well after the feature-scoring technique. In dataset 1 (UNSW-NB15), xNN performed well, with the highest accuracy of 99.7%, while CNN scored 87%, LSTM scored 90%, and the Deep Neural Network (DNN) scored 92%. xNN achieved the highest accuracy of 99.3% while classifying attacks in the second dataset (CICIDS2019); the Convolutional Neural Network (CNN) achieved 87%, Long Short-Term Memory (LSTM) achieved 89%, and the DNN achieved 82%. The suggested solution outperformed the existing systems in terms of the detection and classification accuracy.
Building energy efficiency is vital, due to the substantial amount of energy consumed in buildings and the associated adverse effects. A high-accuracy energy prediction model is considered as one of the most effective ways to understand building energy efficiency. In several studies, various machine learning models have been proposed for the prediction of building energy efficiency. However, the existing models are based on classical machine learning approaches and small datasets. Using a small dataset and inefficient models may lead to poor generalization. In addition, it is not common to see studies examining the suitability of machine learning methods for forecasting the energy consumption of buildings during the early design phase so that more energy-efficient buildings can be constructed. Hence, for these purposes, we propose a multilayer extreme learning machine (MLELM) for the prediction of annual building energy consumption. Our MLELM fuses stacks of autoencoders (AEs) with an extreme learning machine (ELM). We designed the autoencoder based on the ELM concept, and it is used for feature extraction. Moreover, the autoencoders were trained in a layer-wise manner, employed to extract efficient features from the input data, and the extreme learning machine model was trained using the least squares technique for a fast learning speed. In addition, the ELM was used for decision making. In this research, we used a large dataset of residential buildings to capture various building sizes. We compared the proposed MLELM with other machine learning models commonly used for predicting building energy consumption. From the results, we validated that the proposed MLELM outperformed other comparison methods commonly used in building energy consumption prediction. From several experiments in this study, the proposed MLELM was identified as the most efficient predictive model for energy use before construction, which can be used to make informed decisions about, manage, and optimize building design before construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.