Correctable weaknesses in the design, conduct, and analysis of biomedical and public health research studies can produce misleading results and waste valuable resources. Small effects can be difficult to distinguish from bias introduced by study design and analyses. An absence of detailed written protocols and poor documentation of research is common. Information obtained might not be useful or important, and statistical precision or power is often too low or used in a misleading way. Insufficient consideration might be given to both previous and continuing studies. Arbitrary choice of analyses and an overemphasis on random extremes might affect the reported findings. Several problems relate to the research workforce, including failure to involve experienced statisticians and methodologists, failure to train clinical researchers and laboratory scientists in research methods and design, and the involvement of stakeholders with conflicts of interest. Inadequate emphasis is placed on recording of research decisions and on reproducibility of research. Finally, reward systems incentivise quantity more than quality, and novelty more than reliability. We propose potential solutions for these problems, including improvements in protocols and documentation, consideration of evidence from studies in progress, standardisation of research efforts, optimisation and training of an experienced and non-conflicted scientific workforce, and reconsideration of scientific reward systems.
In an effort to pinpoint potential genetic risk factors for schizophrenia, research groups worldwide have published over 1,000 genetic association studies with largely inconsistent results. To facilitate the interpretation of these findings, we have created a regularly updated online database of all published genetic association studies for schizophrenia ('SzGene'). For all polymorphisms having genotype data available in at least four independent case-control samples, we systematically carried out random-effects meta-analyses using allelic contrasts. Across 118 meta-analyses, a total of 24 genetic variants in 16 different genes (APOE, COMT, DAO, DRD1, DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, IL1B, MTHFR, PLXNA2, SLC6A4, TP53 and TPH1) showed nominally significant effects with average summary odds ratios of approximately 1.23. Seven of these variants had not been previously meta-analyzed. According to recently proposed criteria for the assessment of cumulative evidence in genetic association studies, four of the significant results can be characterized as showing 'strong' epidemiological credibility. Our project represents the first comprehensive online resource for systematically synthesized and graded evidence of genetic association studies in schizophrenia. As such, it could serve as a model for field synopses of genetic associations in other common and genetically complex disorders.
Advances in genomics have led to mounting expectations in regard to their impact on health care and disease prevention. In light of this fact, a comprehensive research agenda is needed to move human genome discoveries into health practice in a way that maximizes health benefits and minimizes harm to individuals and populations. We present a framework for the continuum of multidisciplinary translation research that builds on previous characterization efforts in genomics and other areas in health care and prevention. The continuum includes four phases of translation research that revolve around the development of evidence-based guidelines. Phase 1 translation (T1) research seeks to move a basic genome-based discovery into a candidate health application (e.g., genetic test/intervention). Phase 2 translation (T2) research assesses the value of a genomic application for health practice leading to the development of evidence-based guidelines. Phase 3 translation (T3) research attempts to move evidence-based guidelines into health practice, through delivery, dissemination, and diffusion research. Phase 4 translation (T4) research seeks to evaluate the "real world" health outcomes of a genomic application in practice. Because the development of evidence-based guidelines is a moving target, the types of translation research can overlap and provide feedback loops to allow integration of new knowledge. Although it is difficult to quantify how much of genomics research is T1, we estimate that no more than 3% of published research focuses on T2 and beyond. Indeed, evidence-based guidelines and T3 and T4 research currently are rare. With continued advances in genomic applications, however, the full continuum of translation research needs adequate support to realize the promise of genomics for human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.