In this study, we investigated relationships between rough convergence and classical convergence and studied some properties about the notion of rough convergence, the set of rough limit points and rough cluster points of a sequence in 2-normed space. Also, we examined the dependence of r-limit LIM r 2 x n of a fixed sequence (x n) on varying parameter r in 2-normed space.
In this work, we discuss various kinds of $\mathcal{I}_2$-uniform convergence and equi-continuous for double sequences of functions and introduce the concepts of $\mathcal{I}_2$-uniform convergence, $\mathcal{I}_2^*$-uniform convergence, $\mathcal{I}_2$-uniformly Cauchy sequences and $\mathcal{I}_2^*$-uniformly Cauchy sequences for double sequences of functions in $2$-normed spaces. Then, we show the relationships between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.