SummaryIn this review we cover various approaches to meta- and paracyclophanes involving popular reactions. Generally, we have included a strategy where the reaction was used for assembling the cyclophane skeleton for further functionalization. In several instances, after the cyclophane is made several popular reactions are used and these are not covered here. We included various natural products related to cyclophanes. To keep the length of the review at a manageable level the literature related to orthocyclophanes was not included.
Scalable and economical methods for the production of optically pure amino acids, both natural and unnatural, are essential for their use as synthetic building blocks. Currently, enzymatic dynamic kinetic resolution (DKR) underpins some of the most effective processes. Here we report the development of enantioselective extraction coupled with racemization (EECR) for the chirality conversion of underivatized amino acids. In this process, the catalytic racemization of amino acids in a basic aqueous solution is coupled with the selective extraction of one enantiomer into an organic layer. Back-extraction from the organic layer to an acidic aqueous solution then completes the deracemization of the amino acid. The automation of the EECR process in a recycling flow reactor is also demonstrated. Continuous EECR is made possible by the sterically hindered chiral ketone extractant 5, which prevents the coextraction of the copper racemization catalyst because of its nonplanar geometry. Furthermore, the extractant 5 unexpectedly forms imines with amino acids faster and with greater enantioselectivity than less bulky derivatives, even though 5 cannot participate in intramolecular resonance-assisted hydrogen bonding. These features may allow EECR to challenge the preponderance of enzymatic DKR in the production of enantiomerically enriched amino acids.
Here, we report a new and diversity-oriented approach to macrocyclic cyclophanes by a Grignard reaction, followed by Fischer indolization and ring-closing metathesis (RCM) as key steps. The configuration of the double bond formed during the RCM depends upon the order of synthetic sequence used. Fischer indolization followed by RCM delivers the cis isomer, whereas RCM followed by Fischer indolization gives the trans isomer.
A novel multifunctional aminophenylboronic acid connected to a diphenylketone gives both circular dichroism and fluorescence signals by in situ generation of a BODIPY-like chromophore in the presence of aminoalcohols. DFT calculations were used to understand the role of each functional group in the mechanism. This new sensor can distinguish different aminoalcohols and quantitatively indicate the concentration of the substrate, allowing for the convenient determination of the ee of racemic mixtures with a single probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.