A unique evidence of crystalline phase, known as Wigner crystal (WC), is explored in Electron-Hole quantum bilayers (EHBL) by tuning electron layer density independently at zero-temperature and zero-magnetic field. The quantum or dynamical version of Singwi, Tosi, Land and Sjölander (qSTLS) approach is used for obtaining the static density susceptibility. The static density susceptibility plays very important role for exploration of WC phase by showing a divergent behavior at finite wavevector, corresponds to the reciprocal lattice wavevector, during the phase transition from liquid state to WC ground-state. A comparison of present results with a recent results of dependently tunable EHBL system [Phys. Rev. B 66, 205316 (2002)] shows that the onset of Wigner crystallization now occurs at sufficiently lower interlayer spacing by tuning the electron layer density and keeping hole layer density fixed. Further, the prediction of WC phase gets support from the structure factor which exhibits a strong peak near the phase transition point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.