An efficient diazo dye degrading bacterial strain, Bacillus sp. DMS2 was isolated from a long-term textile dye polluted environment. The strain was assessed for its innate ability to completely degrade and detoxify Direct Red 81 (DR81) textile dye under microaerophilic conditions. The degradation ability of strain showed significant results on optimizing the nutritional and environmental parameters. Based on statistical models, maximum efficiency of decolorization achieved within 24 h for 100 mg/l of dye supplemented with glucose (0.02%), MgSO 4 (0.002%) and urea (0.5%) at 30 • C and pH (7.0). Moreover, a significant catabolic induction of a laccase and azoreductase suggested its vital role in degrading DR81 into three distinct metabolites (intermediates) as by-products. Further, toxicity analysis of intermediates were performed using seeds of common edible plants, aquatic plant (phytotoxicity) and the nematode model (animal toxicity), which confirmed the non-toxic nature of intermediates. Thus, the inclusive study of DMS2 showed promising efficiency in bioremediation approach for treating industrial effluents.
The present study was focused to isolate the bioactive compounds present in the leaves of Moringa oleifera which contains a high nutritional value. Furthermore, the research was aimed to evaluate the antioxidant, anti-aging, and anti-neurodegenerative properties of M. oleifera using the experimental model Caenorhabditis elegans. The separation of compounds from the crude extract and its identification was carried out through TLC, Column chromatography, UV absorption spectroscopy, and GC-MS. The compounds identified in most abundant fraction of column chromatography were [Phenol-2,4-bis(1,1-dimethylethyl)-phosphite (3:1)] and Tetratetracontane. The result suggests that the leaves extracts and column fraction were able to significantly extend the life span of the N2 wild-type strain of C. elegans. The most potent life span extending effect was displayed by the dichloromethane extract of leaves which was 21.73 ± 0.142 days compared to the control (16.55 ± 0.02 days). It could also extend the health span through improved physiological functions such as pharyngeal pumping, body bending, and reversal frequency with increased age. The treated worms were also exhibited improved resistance to thermal stress, oxidative stress, and reduced intracellular ROS accumulation. Moreover, the leaves extract could elicit neuroprotection as it could delay the paralysis in the transgenic strain of C. elegans 'CL4176' integrated with Aβ. Interestingly, The RNAi experiment demonstrated that the extended life span under the treatment of extracts and the compound was daf-16 dependent. In transgenic C. elegans TJ356, the DAF-16 transcription factor was localized in the nucleus under the stress conditions, further supported the involvement of the daf-16 gene in longevity. Overall, the study suggests the potential of M. oleifera as a dietary supplement and alternative medicine to defend against oxidative stress and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.