Multiple, complex molecular events characterize cancer development and progression1,2. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumors, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high throughput liquid and gas chromatography-based mass spectrometry, we profiled more than 1126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer, and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly elevated during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also elevated in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase (GNMT), the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase (SARDH), induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Taken together, we profiled the metabolomic alterations of prostate cancer progression revealing sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
Gene fusions have a critical role in cancer progression. Mechanisms associated with the genesis and cell type specificity of these fusions are not well understood. A prototypical gene fusion, TMPRSS2-ERG, involves the 5' untranslated region of the androgen-regulated gene TMPRSS2 with the ERG gene, and is the most common gene fusion associated with prostate cancer. We demonstrate that androgen signaling induces chromosomal proximity between TMPRSS2 and ERG loci, and facilitates the formation of the TMPRSS2-ERG gene fusion when subjected to an agent that causes DNA double strand breaks. These results provide a conceptual framework for the genesis of gene fusions and may provide suggestions as to the general etiology of human prostate cancer.Gene fusions are a hallmark of cancer development (1), but the mechanisms underlying their genesis and cell type specificities are unclear (2).Fusions of the TMPRSS2 and ERG genes, which are located 3 Mb apart on human chromosome 21q22.2, are found in about 50% of prostate cancers and consist of the 5' untranslated region of TMPRSS2, an androgen-regulated gene, fused to the protein-coding sequence of ERG, which encodes an erythroblast transformation-specific (ETS) transcription factor (2). Recently, estrogen was shown to induce rapid chromosomal movements that bring together estrogen receptor α-bound genes on different chromosomes (3). Given the broad similarities between estrogen and androgen signaling, we hypothesized that androgen might likewise induce chromosomal movements and bring together the TMPRSS2 and ERG genes, thereby facilitating the formation of gene fusions.To examine the effects of androgen signaling on the formation of TMPRSS2-ERG, we studied LNCaP prostate cancer cells, which are androgen sensitive but lack this fusion gene (4) (fig.
Laboratory studies that led to the development of epidermal growth factor receptor (EGFR) inhibitors indicated that such inhibitors would be effective when given to patients with tumours that are driven by activated EGFR. However, initial clinical studies have shown modest responses to EGFR inhibitors when used alone, and it has not yet been possible to clearly identify which tumours will respond to this therapy. As a result, EGFR inhibitors are now used in combination with radiation therapy, chemotherapy and, more recently, with concurrent radiochemotherapy. In general, these clinical trials have been designed without much preclinical data. What do we need to know to make these combinations successful in the clinic?
Head and neck cancer (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment-resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment-resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate non homologous end joining (NHEJ), as TRIP13 binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
Transcriptional repressors and corepressors play a critical role in cellular homeostasis and are frequently altered in cancer. C-terminal binding protein 1 (CtBP1), a transcriptional corepressor that regulates the expression of tumor suppressors and genes involved in cell death, is known to play a role in multiple cancers. In this study, we observed the overexpression and mislocalization of CtBP1 in metastatic prostate cancer and demonstrated the functional significance of CtBP1 in prostate cancer progression. Transient and stable knockdown of CtBP1 in prostate cancer cells inhibited their proliferation and invasion. Expression profiling studies of prostate cancer cell lines revealed that multiple tumor suppressor genes are repressed by CtBP1. Furthermore, our studies indicate a role for CtBP1 in conferring radiation resistance to prostate cancer cell lines. In vivo studies using chicken chorioallantoic membrane assay, xenograft studies, and murine metastasis models suggested a role for CtBP1 in prostate tumor growth and metastasis. Taken together, our studies demonstrated that dysregulated expression of CtBP1 plays an important role in prostate cancer progression and may serve as a viable therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.