The current study was planned to identify drought tolerant bread wheat genotypes based on physiological and yield traits. In this context, a set of 12 genotypes (Sarsabz, NIA-Sundar, NIA-Amber, Sassui, Khirman, Marvi-2000, NIA-Sarang, Kiran-95, NIA-Sunheri, Bhittai, Bathoor-08 and Tatara) were evaluated under normal and water stress conditions. Mean squares from analysis of variance exhibited that genotypes, treatments and genotype x treatment interaction showed significant differences (P<0.05) for majority of the studied traits, indicating that there is significant variations are existed for physio-yield traits; therefore these genotypes may be preferred for further breeding programs in respect to drought stress. Regarding reduction percentage of genotypes under drought stress against normal water conditions, the minimum reduction was observed in Bathoor-08 for spike length and flag leaf area, Kiran-95 for grain yield plant, NIA-Sundar for seed index, Marvi-2000 for relative water content, Sarsabz for grains spike, whereas maximum but desirable reduction of stomatal dimension and density was displayed by Sarsabz and Tatara under water stress conditions, respectively. On the basis of drought tolerant indices, the genotypes Kiran-95, NIA-Sundar and Sarsabz showed lower values for tolerance index (TOL), trait stability index (TSI) and stress susceptibility (SSI), nevertheless it is believed that lower values of these indices show the less reduction in yield and its related traits due to water stress conditions hence can be tagged as tolerant genotypes for drought. Correlation results revealed that MP, SSI, TOL and TSI indices were correlated with grain yield under two conditions and they can be the appropriate indices for screening wheat genotypes.
A field experiment was conducted during summer 2016 to screen out sunflower (Helianthus annuusL.) genotypes for their potassium (K) use efficiency ratio. Eight sunflower genotypes were tested; Samsung 20, Mehran 2, Ho-1, Melabour, Samsung 30, Valugur, Chinika and Sputnik in randomised complete block design (RCBD) with the two treatments comprised of potassium at (50 and 0 kg K ha-1) along with source (SOP) recommended dose fertilizer respectively. The results revealed that the treated and control plots (50 and 0 kg K ha-1) produced different values for of seeds (1763.1 and 1588.5 head-1), shoot dry weight (23.0 and 19.11 g), head diameter (17.45 and 15.72 cm), seed yields (2065.8 and 1918.7 kg ha-1), seed K % (0.60 and 0.30%) and diagnostic tissue % (3.54 and 2.65%) respectively. The considerable increase was found in seeds head-1(10.99%), shoot dry weight (20.35%), head diameter (11.01%), seed yields (11.31%) seed K % (100%), and leaf K % (33.58%). Among genotypes, Ho-1 was highly efficient to utilize added K fertilizer more seed (2039.7 head-1), shoot dry weight (25.86 g), plant height (188.66 cm), head diameter (20.20 cm), seed yields (2409.5 kg hat-1). Moreover seed K % and leaf K % was also high in variety Ho_1 (0.65% and (5.05%) respectively. Among all the sunflower tested genotypes Ho-1 showed significant response applied K but the variety Ho-1 and genotype Chinika were more efficient in utilization of K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.