A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for growing and non-growing subpopulations, a logistic model was developed for cell growth and dynamic models were formulated to describe culture composition and monoclonal antibody (MAb) secretion. The model was validated for a range of nutrient concentrations. Good agreement was obtained between model predictions and experimental data. The ultimate goal of this study is to establish a comprehensive dynamic model which may be used for model-based optimization of the cell culture for MAb production in both batch and fed-batch systems.
The degradation of environmental conditions, such as nutrient depletion and accumulation of toxic waste products over time, often lead to premature apoptotic cell death in mammalian cell cultures and suboptimal protein yield. Although apoptosis has been extensively researched, the changes in the whole cell proteome during prolonged cultivation, where apoptosis is a major mode of cell death, have not been examined. To our knowledge, the work presented here is the first whole cell proteome analysis of non-induced apoptosis in mammalian cells. Flow cytometry analyses of various activated caspases demonstrated the onset of apoptosis in Chinese hamster ovary cells during prolonged cultivation was primarily through the intrinsic pathway. Differential in gel electrophoresis proteomic study comparing protein samples collected during cultivation resulted in the identification of 40 differentially expressed proteins, including four cytoskeletal proteins, ten chaperone and folding proteins, seven metabolic enzymes and seven other proteins of varied functions. The induction of seven ER chaperones and foldases is a solid indication of the onset of the unfolded protein response, which is triggered by cellular and ER stresses, many of which occur during prolonged batch cultures. In addition, the upregulation of six glycolytic enzymes and another metabolic protein emphasizes that a change in the energy metabolism likely occurred as culture conditions degraded and apoptosis advanced. By identifying the intracellular changes during cultivation, this study provides a foundation for optimizing cell line-specific cultivation processes, prolonging longevity and maximizing protein production.
-The polymer hydrogel was synthesized by photo-polymerization process (UV light, 60 O C) in presence of Photo-initiator (Irgacure R ) and Cross-linker (NN'-methylene bisacrylamide; MBAM). In the present work, the drying of polymer hydrogel was carried out to study the effect of temperature, gel-sheet thickness, monomer ratio of acryl acid to acrylamide (AA/AM), concentration of MBAM and quantity of monomers. A correlation has been developed for modified sheet thickness as a function of contraction coefficient and degree of drying. Effective diffusivity was estimated from Fickian-diffusive model considering modified sheet thickness and was found to be in the range of 1.1 × 10 -10 -5.93 × 10 -10 m 2 /s. The activation energy obtained using Arrhenius type equation was found to be in the range of 2979-10737 kJ/kmol H 2 O. The drying behavior shows an initial shoot-up in drying rate followed by constant rate and two falling rate periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.