To address the neural mediation of the eating-inhibitory effect of circulating glucagon-like peptide-1 (GLP-1), we investigated the effects of 1) intra-fourth ventricular infusion of the GLP-1 receptor antagonist exendin-9 or 2) area postrema lesion on the eating-inhibitory effect of intrameal hepatic portal vein (HPV) GLP-1 infusion in adult male rats. To evaluate the physiological relevance of the observed effect we examined 3) the influence of GLP-1 on flavor acceptance in a 2-bottle conditioned flavor avoidance test, and 4) measured active GLP-1 in the HPV and vena cava (VC) in relation to a meal and in the VC after HPV GLP-1 infusion. Intrameal HPV GLP-1 infusion (1 nmol/kg body weight-5 min) specifically reduced ongoing meal size by almost 40% (P < .05). Intra-fourth ventricular exendin-9 (10 μg/rat) itself did not affect eating, but attenuated (P < .05) the satiating effect of HPV GLP-1. Area postrema lesion also blocked (P < .05) the eating-inhibitory effect of HPV GLP-1. Pairing consumption of flavored saccharin solutions with HPV GLP-1 infusion did not alter flavor acceptance, indicating that HPV GLP-1 can inhibit eating without inducing malaise. A regular chow meal transiently increased (P < .05) HPV, but not VC, plasma active GLP-1 levels, whereas HPV GLP-1 infusion caused a transient supraphysiological increase (P < .01) in VC GLP-1 concentration 3 minutes after infusion onset. The results implicate hindbrain GLP-1 receptors and the area postrema in the eating-inhibitory effect of circulating GLP-1, but question the physiological relevance of the eating-inhibitory effect of iv infused GLP-1 under our conditions.
Objective: Contrast-enhanced ultrasound molecular imaging (CEUMI) of endothelial expression of VCAM (vascular cell adhesion molecule)-1 could improve risk stratification for atherosclerosis. The microbubble contrast agents developed for preclinical studies are not suitable for clinical translation. Our aim was to characterize and validate a microbubble contrast agent using a clinically translatable single-variable domain immunoglobulin (nanobody) ligand. Approach and Results: Microbubble with a nanobody targeting VCAM-1 (MB cAbVcam1-5 ) and microbubble with a control nanobody (MB VHH2E7 ) were prepared and characterized in vitro. Attachment efficiency to VCAM-1 under continuous and pulsatile flow was investigated using activated murine endothelial cells. In vivo CEUMI of the aorta was performed in atherosclerotic double knockout and wild-type mice after injection of MB cAbVcam1-5 and MB VHH2E7 . Ex vivo CEUMI of human endarterectomy specimens was performed in a closed-loop circulation model. The surface density of the nanobody ligand was 3.5×10 5 per microbubble. Compared with MB VHH2E7 , MB cAbVcam1-5 showed increased attachment under continuous flow with increasing shear stress of 1-8 dynes/cm 2 while under pulsatile flow attachment occurred at higher shear stress. CEUMI in double knockout mice showed signal enhancement for MB cAbVcam1-5 in early ( P =0.0003 versus MB VHH2E7 ) and late atherosclerosis ( P =0.007 versus MB VHH2E7 ); in wild-type mice, there were no differences between MB cAbVcam1-5 and MB VHH2E7 . CEUMI in human endarterectomy specimens showed a 100% increase in signal for MB cAbVcam1-5 versus MB VHH2E7 (20.6±27.7 versus 9.6±14.7, P =0.0156). Conclusions: CEUMI of the expression of VCAM-1 is feasible in murine models of atherosclerosis and on human tissue using a clinically translatable microbubble bearing a VCAM-1 targeted nanobody.
BackgroundMyocarditis can lead to myocyte loss and myocardial fibrosis resulting in dilated cardiomyopathy (DCMP). Currently employed methods for assessing the risk for development of DCMP are inaccurate or rely on invasive myocardial biopsies. We hypothesized that molecular imaging of tissue inflammation with contrast enhanced ultrasound during peak inflammation in myocarditis could predict development of fibrosis and impaired left ventricular function.Methods and resultsExperimental autoimmune myocarditis (EAM) was induced in Balbc mice by injection of the α-myosin heavy chain peptide. Contrast enhanced ultrasound (CEU) using microbubbles targeted to leukocytes (MBLc), to CD4+ lymphocytes (MBCD4), and to the endothelial cell adhesion molecule P-selectin (MBPSel) was performed during the expected EAM peak inflammatory activity 21 days after induction. High resolution ultrasound, invasive hemodynamic measurements and fibrosis quantification were done 63 days after EAM assessment. All tested microbubbles correlated to fibrosis (MBLc spearman r 0.28, p 0.047, MBCD4 r 0.44, p 0.01, MBPSel r 0.73, p 0.02), however, correlations were weak overall and the spread of data was considerable. Also, targeted CEU data on day 21 did not correlate to hemodynamic and functional data on day 63.ConclusionsUltrasound molecular imaging using targeted microbubbles during the peak inflammatory activity of myocarditis correlates weakly with later development of fibrosis but not with hemodynamic or left ventricular functional parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.