With the aim to identify future challenges and opportunities in vegetation science, we brought together a group of 22 early career vegetation scientists from diverse backgrounds to perform a horizon scan. In this contribution, we present a selection of 15 topics that were ranked by participants as the most emergent and impactful for vegetation science in the face of global change. We highlight methodological tools that we expect will play a critical role in resolving emerging issues by providing ways to unveil new aspects of plant community dynamics and structure. These tools include next generation sequencing, plant spectral imaging, process‐based species distribution models, resurveying studies and permanent plots. Further, we stress the need to integrate long‐term monitoring, the study of novel ecosystems, below‐ground traits, pollination interactions and global networks of near‐surface microclimate data at fine spatio‐temporal resolutions to fully understand and predict the impacts of climate change on vegetation dynamics. We also emphasize the need to integrate traditional forms of knowledge and a diversity of stakeholders into research, teaching, management and policy‐making to advance the field of vegetation science. The conclusions reached by this horizon scan naturally reflect the background, expertise and interests of a representative pool of early career vegetation scientists, which should serve as basis for future developments in the field.
Vegetation recovery on Mount Koma, Hokkaido, Japan, has been slow after the catastrophic eruption in 1929, due to undeveloped soil and limited plant colonization. Nowadays, the seedling establishment is supported mostly by a nurse plant, Salix reinii forming shrub patches, facilitates the plant colonization. Although the effects of shrub patches should differ with patch sizes, the size effects have not been examined well. To examine the size effects, seed-sowing experiments were conducted on two common pioneer herbaceous species, Miscanthus sinensis and Polygonum sachalinense, in the field. The seed germination and seedling survival were monitored by the seeds sown into S. reinii patches (0.97 m 2 to 4.12 m 2 in area) for 4 months during snow-free periods. Microenvironments altered by the patches were measured. Lab-experiments were performed to characterize the seed germination and seedling growth. Larger patches decreased light intensity and temperature more and increased litter and water content. The large patches promoted the seed germination of the two species. Interspecific interactions, examined by a seed mixture experiment, showed that the interaction increased the seed germination on M. sinensis and decreased that on P. sachalinense. On the lab-experiments at three temperatures (15, 20 and 25 o C), M. sinensis seeds germinated more at higher temperatures and obtained higher seedlings biomass. P. sachalinense germinated the seeds more at 20 o C and grew faster at lower temperatures. The total biomass of the two species was reduced by shade that intercepted 50% of light intensity. The seed germination and seedling growth of these two species became higher on litter with 2 cm in depth than on no litter. Soil water supported seed germination when the seeds of these two species were mixed while the water reduced the growth of P. sachalinense seedlings. Therefore, the dry soils were suitable for their growths. In all the treatments, P. sachalinense seedlings showed higher mortalities than M. sinensis. In conclusion, the large patches facilitated more to the colonization of pioneer plants via seed germination and growth. Large patches acted as a nursery supporting the natural regeneration in the disturbed area by improving litter accumulation, maintaining soil water, reducing strong light and/or protecting from heat.
Background Agriculture produces food for billions of humans and creates livelihoods for farmers. However, the current food production systems, driven by the increasing food demand and the ever-growing human population, are undermining ecological resources, primarily those related to biodiversity. Accordingly, agricultural production in tropical rainforest countries has been a trade-off, as regions harbor high biodiversity while also being pressured by agricultural land expansion. Consequently, threats to biodiversity are inevitable and will likely affect the ecosystem service provisions necessary for the agricultural process. Presently, no study reviews and maps the evidence of relationships between biodiversity and agriculture in the tropical rainforest landscape. Therefore, such a study is necessary to identify the knowledge gaps and provide scientific evidence to the relevant policymakers for safeguarding biodiversity within agricultural policies. This study aims to collect available published literature that evaluates the relations of agricultural production and biodiversity. We will focus on the agriculture and priority crops in the countries producing the commodities situated in the tropical rainforest landscape. Methods Generic search terms derived from research question elements will be used to search relevant articles. These terms are in English, and the searches will encompass global tropical rainforest countries. Peer-reviewed and gray literature articles retrieved from search engines and databases will be screened first using the title and abstract and second at the full-text level. The latter screening process will involve data coding to retrieve relevant characteristics from each eligible study and finally collate these characteristics into an evidence map, which will provide a current state of knowledge and further support evidence-informed policy formulation. The map presentation in the final report will also be complemented by a narrative synthesis explaining the trends, pinpointing the knowledge gluts and gaps, serving relevant information, and searchable databases for associated stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.