Asphaltene is a component of crude oil that has been reported to cause severe problems during production and transportation of the oil from the reservoir. It is a solid component of the oil that has different structures and molecular makeup which makes it one of the most complex components of the oil. This research provides a detailed review of asphaltene properties, characteristics, and previous studies to construct a guideline to asphaltene and its impact on oil recovery. The research begins with an explanation of the main components of crude oil and their relation to asphaltene. The method by which asphaltene is quantified in the crude oil is then explained. Due to its different structures, asphaltene has been modeled using different models all of which are then discussed. All chemical analysis methods that have been used to characterize and study asphaltene are then mentioned and the most commonly used method is shown. Asphaltene will pass through several phases in the reservoir beginning from its stability phase up to its deposition in the pores, wellbore, and facilities. All these phases are explained, and the reason they may occur is mentioned. Following this, the methods by which asphaltene can damage oil recovery are presented. Asphaltene rheology and flow mechanism in the reservoir are then explained in detail including asphaltene onset pressure determination and significance and the use of micro-and nanofluidics to model asphaltene. Finally, the mathematical models, previous laboratory, and oilfield studies conducted to evaluate asphaltene are discussed. This research will help increase the understanding of asphaltene and provide a guideline to properly study and model asphaltene in future studies.
Carbon dioxide (CO 2) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during CO 2 injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without CO 2 in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen-Mullins asphaltene model and were used to select the proper chemical to alter the oil's viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying CO 2 injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen-Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during CO 2 injection in different pore sizes, and correlates the results to the principle of the Yen-Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during CO 2 injection in different pore sizes in order to help reduce asphaltene-related problems that arise during CO 2 injection in hydrocarbon reservoirs.
Cyclic gas injection methods have been shown to improve oil recovery in conventional reservoirs. Even though similar technologies have been used in unconventional reservoirs with some success stories in shale resources, cyclic gas injection enhanced oil recovery (EOR) is still a little-understood subject in boosting oil recovery from unconventional reservoirs. During gas injection, asphaltenes start to deposit and precipitate, which causes pore plugging and reduces oil recovery. Studies of asphaltene deposition challenges during cyclic nitrogen (N 2 ) gas injection and oil production in unconventional reservoirs are yet relatively limited. Therefore, a comprehensive experimental study was conducted using 12 Eagle Ford shale cores (dynamic mode), and filter paper membranes (static mode) were used to evaluate whether miscible and immiscible huff-n-puff (cyclic) N 2 injection increases oil recovery and aggravates asphaltene precipitation. To ensure that miscibility can be examined in cyclic experiments, N 2 minimum miscibility pressure (MMP) was determined using a slim tube technique. The factors studied included the injection pressure, number of cycles, production time, and injection cyclic mode, all conducted at 70 °C. The findings showed that a high asphaltene weight percent was calculated during static experiments (i.e., using filter membranes), and this increase was severe on smaller pore size structures. Dynamic tests (i.e., using shale cores) showed that miscibility increased oil recovery, but a stronger intermediate-wet system was observed when measuring the wettability of cores after N 2 cyclic tests. When starting with shorter soaking times, more oil recovery could be achieved. Oil recovery reduction and asphaltene depositions were observed at later cycles. Microscopy and scanning electron microscopy (SEM) imaging of the Eagle Ford cores showed asphaltene clusters inside the cores after cyclic tests. A mercury porosimeter emphasized the degree of pore plugging after cyclic tests, and the findings revealed a smaller pore size distribution after N 2 tests due to the asphaltene deposition process when compared to cores that had not been pressured. This extensive study focuses on the effects of asphaltene deposition on oil recovery under cyclic N 2 -miscible and immiscible conditions in shale resources.
Summary Asphaltene precipitation and deposition is considered one of the prevailing issues during carbon dioxide (CO2) gas injection in gas enhanced oil recovery techniques, which leads to pore plugging, oil recovery reduction, and damaged surface and subsurface equipment. This research provides a comprehensive investigation of the effect of immiscible and miscible CO2 gas injection in nanopore shale structures on asphaltene instability in crude oil. A slimtube was used to determine the minimum miscibility pressure (MMP) of the CO2. This step is important to ensure that the immiscible and miscible conditions will be achieved during the filtration experiments. For the filtration experiments, nanocomposite filter paper membranes were used to mimic the unconventional shale pore structure, and a specially designed filtration apparatus was used to accommodate the filter paper membranes. The uniform distribution (i.e., same pore size filters) was used to illustrate the influence of the ideal shale reservoir structure and to provide an idea on how asphaltene will deposit when utilizing the heterogeneous distribution (i.e., various pore size filters) that depicts the real shale structure. The factors investigated include immiscible and miscible CO2 injection pressures, temperature, CO2 soaking time, and pore size structure heterogeneity. Visualization tests were undertaken after the filtration experiments to provide a clear picture of the asphaltene precipitation and deposition process over time. The results showed an increase in asphaltene weight precent in all experiments of the filtration tests. The severity of asphaltene aggregations was observed at a higher rate under miscible CO2 injection. It was observed that the miscible conditions have a higher impact on asphaltene instability compared to immiscible conditions. The results revealed that the asphaltene deposition was almost equal across all the paper membranes for each pressure used when using a uniform distribution. Higher asphaltene weight percent were determined on smaller pore structures of the membranes when using heterogeneous distribution. Soaking time results revealed that increasing the soaking time resulted in an increase in asphaltene weight precent, especially for 60 and 120 minutes. Visualization tests showed that after 1 hour, the asphaltene clusters started to precipitate and could be seen in the uppermost section of the test tubes and were fully deposited after 12 hours with less clusters found in the supernatant. Also, smaller pore size of filter membranes showed higher asphaltene weight percent after the visualization test. Chromatography analysis provided further evaluation on how asphaltene was reduced though the filtration experiments. Microscopy and scanning electron microscopy (SEM) imaging of the filter paper membranes showed the severity of pore plugging in the structure of the membranes. This research highlights the impact of CO2 injection on asphaltene instability in crude oil in nanopore structures under immiscible and miscible conditions. The findings in this research can be used for further research of asphaltene deposition under gas injection and to scale up the results for better understanding of the main factors that may influence asphaltene aggregation in real shale unconventional reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.