Nickel catalysts represent a low cost and environmentally friendly alternative to palladium-based catalytic systems for Suzuki–Miyaura cross-coupling (SMC) reactions. However, nickel catalysts have suffered from poor air, moisture, and thermal stabilities, especially at high catalyst loading, requiring controlled reaction conditions. In this report, we examine a family of mono- and dinuclear Ni(II) and Pd(II) complexes with a diverse and versatile α-diimine ligand environment for SMC reactions. To evaluate the ligand steric effects, including the bite angle in the reaction outcomes, the structural variation of the complexes was achieved by incorporating iminopyridine- and acenaphthene-based ligands. Moreover, the impact of substrate bulkiness was investigated by reacting various aryl bromides with phenylboronic acid, 2-naphthylboronic acid, and 9-phenanthracenylboronic acid. Yields were the best with the dinuclear complex, being nearly quantitative (93–99%), followed by the mononuclear complexes, giving yields of 78–98%. Consequently, α-diimine-based ligands have the potential to deliver Ni-based systems as sustainable catalysts in SMC.
The usefulness of transition metal catalytic systems in C–S cross-coupling reactions is significantly reduced by air and moisture sensitivity, as well as harsh reaction conditions. Herein, we report four highly air- and moisture-stable well-defined mononuclear and bridged dinuclear α-diimine Ni(II) and Pd(II) complexes for C–S cross-coupling. Various ligand frameworks, including acenaphthene- and iminopyridine-based ligands, were employed, and the resulting steric properties of the catalysts were evaluated and correlated with reaction outcomes. Under aerobic conditions and low temperatures, both Ni and Pd systems exhibited broader substrate scope and functional group tolerance than previously reported catalysts. Over 40 compounds were synthesized from thiols containing alkyl, benzyl, and heteroaryl groups. Also, pharmaceutically active heteroaryl moieties are incorporated from thiol and halide sources. Notably, the bridged dinuclear five-coordinate Ni complex has outperformed the remaining three mono four- or six-coordinate complexes by giving almost quantitative yields across a broad substrate scope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.